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PREFACE

In January 1985, Dr. James A. Ionson, then Director of the Science and
Technology Directorate of SDIO, asked the research staff at IDA to investigate the

feasibility of developing a gamma-ray laser. The staff responded first by determining what
work had been done, who was currently working in the field, and what work should be

encouraged or supported. This was accomplished by convening a workshop for research
workers directly involved in gamma-ray laser work and others involved in ancillary fields

such as nuclear structure, radiation propagation in crystals, Mossbauer Effect, and optical
lasers. The proceedings of the workshop are presented in IDA Report M-162 (Ref. 1).

Next, a study was undertaken to clarify critical issues concerning the various

pumping schemes proposed at the workshop as well as systems questions about the
gamma-ray laser as a working device. The work completed in 1985 is presented in IDA

Report P-2021 (Ref. 2).

The development of a y-ray laser is viewed as a high-risk/high-payoff undertaking.

IDA's involvement focuses on minimizing that risk and on striving to redirect the effort

when proposed schemes are shown not to be feasible.

Most recently, work has focused on extending the data base, on exploring the
nature of superradiance in the gamma-ray laser context, and on undertaking a detailed

investigation of the upconversion pumping scheme. A study of nuclear systematics, an
investigation of electron-nuclear driven pumping, and a discussion of the uncertainty

principle lifetime measurement and its impact on the long lifetime concept round out the

effort and are discussed in this report.

This report does not have an overall introduction. Each of the seven chapters is an

independent study containing its own introduction.
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ABSTRACT

This report summarizes the IDA research effort in FY 1986 in investigating the
feasibility of developing a y-ray laser.
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SUMMARY

This report represents the 1986 effort of the IDA staff in the field of gamma-ray

lasers. The work is part of a continuing task that supports the Innovative Science and
Technology Office (IST) of the Strategic Defense Initiative Organization (SDIO). The

development of a yf-ray laser is viewed as a high-risk/high-payoff undertaking. IDA's

involvement focuses on minimizing that risk and on striving to redirect the effort when
proposed schemes are shown not to be possible. In laying out its work, the IDA staff

strives to complement and support the various efforts of the IST contractors who make up

the gamma-ray laser community. Thus, although the seven chapters of this report are all
independent studies, each supports either a proposed pumping scheme or the general

theoretical underpinning of the laser. Three chapters are concerned with aspects of the

Upconversion Schemes; one chapter each relates to the Electron-Nuclear Coupling Scheme

and the Long Lifetime Scheme; and two chapters focus on theoretical aspects of

superradiance which underlies all the proposed schemes.

Chapters I, IV, and V involve the Upconversion Schemes. In these schemes, a

nucleus in an isomeric state is excited to a nearby state by absorbing electromagnetic

energy. Deexcitation of the nearby state leads to the lasing transition. Chapters II and III
& discuss various aspects of superradiance (or superfluorescence) phenomena; Chapter VI

deals with electron nuclear coupling and its effect on energy transfer; and Chapter VII,

lifetime measurement and the uncertainty principle.

Chapter I presents in tabular form the results of a thorough search for nuclear levels
0 in the Nuclear Data Sheets; these are for levels which could be suitable for a laser. The

search located 80 isomers in 75 nuclei with 130 levels within 50 keV of the isomer. The

data is presented in a form useful for researchers in the field. Work is in progress to

produce such information for other pumping schemes.

It is generally believed that if a gamma-ray laser is developed it will probably emit

in a superradiant mode instead of a stimulated emission mode. Thus, superradiance is of

prim.. importance to all pumping concepts. In Chapters II and III various aspects of

superradiant emission are discussed from the standpoint of adapting the techniques of

atomic and molecular superradiance to nuclear systems. In Chapter II, Dicke superradiance

S-1



is presented in terms of a group theoretical approach. Various simple models have been

devised in the framework of this approach. The use of Young tableaux techniques for

describing symmetry properties of the states of a Dicke superradiant system is discussed.

In Chapter III, the quantum mechanical Bonifacio-Lugiato (B-L) theory of

superradiance under various conditions is investigated, using numerical calculations. A

thorough analysis is provided of some of the assumptions of the theory and for the first

time the observation of real instabilities in the superradiance dynamics are pointed out and

the source of the instabilities identified. It was determined that for the investigation of

certain features of nuclear superradiance the B-L theory can be used to advantage. Effects

of coherent excitation, relaxation, and inhomogeneous and homogeneous broadening in

nuclear superradiance could be studied with the B-L theory. To take into account

incoherent excitation (inversion), competing transitions, and transport effects, all of which

are important to the 7-ray laser feasibility study, other theories have to be considered.

Among the many pumping concepts introduced over the years, the upconversion by

photons of a nuclear level from an isomeric level to achieve inversion is the one most

vigorously pursued by researchers at present. The idea is to pump the isomeric level by a

short burst of electromagnetic radiation from a powerful optical laser or x-ray source to a

nearby short-lived level. The lifetime of the upper lasing level should be short enough to

provide a large cross section for the stimulated emission but not so short that it would

introduce pumping problems with large power requirements.

In Chapter IV the requirements imposed by nuclear properties on the realization of

those processes are discussed. First, we examine a proposed single-photon Raman

scattering experiment and compare requirements set by atomic and nuclear systems.

Second, we discuss multiphoton processes and examine the requirements for pumping out

isomeric levels and preparing an inverted population for lasing A number of specific

results were obtained in this investigation. We have derived the correct expressions for the

off-resonance cross sections and power requirements for single-photon excitations.

Previously used expressions have overestimated the cross sections and underestimated

power requirements by as much as six orders of magnitude.

A parametric study of multiphoton upconversion for both atomic and nuclear

systems underscores the difficulty of working with nuclear systems as compared to atomic

systems due to the ten orders of magnitude greater power requirements. Upconversion by

photons does not seem to be a good way to produce inversion.
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Chapter V considers a set of three nuclear levels and the electromagnetic transitions
that must take place among them to upconvert from isoir -. nearby state and to go from

the latter state to the lasing transition. The nuclear quantum numbers and the level spacings

are varied to optimize the lasing problem. It is shown that severe problems occur when

upconverting by using a photon beam because of the screening effect of the nucleus by the
atomic electrons. The use of the coulomb fields of proton and electron beams for excitation

of the isomer is also considered.

Chapter VI considers the possibility that the electronic cloud surrounding the
nucleus can actually be used to mediate the transfer of electromagnetic energy to that

0 nucleus. A semiclassical approach has been used to describe the interaction of one or more

valence nucleons and one or more valence atomic electrons with each other and with the

nuclear core. A Hamiltonian is set up for the problem; it uses a Saxon-Woods potential to

describe the interaction of the valence nucleon with the nuclear core. The autocorrelation
function of the dipole moment is calculated and used to obtain the power spectrum for one

valence proton interacting with one inner electron. The results are encouraging and, it is

hoped, will lead to the use of more realistic nuclear potentials.

Chapter VII considers the uncertainty principle to determine whether there is an
inherent limitation in the measurement time required to determine the lifetime or width of an
isomer. The answer in the example used is no. The strength of the source is the relevant

limitation. The discussion is relevant to criticisms about attempts to get rid of

inhomogeneous broadening in the long lifetime scheme. The result is that there is no

reason to deny the validity of the scheme.
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I. SEARCH FOR NUCLEAR LEVELS FOR
GAMMA-RAY LASERS

0

A. INTRODUCTION

This chapter presents the results of the search for candidate nuclei for the

* upconversion, level mixing, and electron-nuclear energy transfer lasing schemes discussed

in IDA Memorandum Report M-162 (Ref. 1). These lasing schemes are described in

Chapter I of that report (c.f. Fig. 1). In these schemes the nucleus in an isomeric state is
"pumped" to a close-lying level of higher energy from which the lasing radiation is emitted.

B. SCOPE

This compilation includes isomers which have:

1. A half-life (isomeric state) > 1 min.,

* 2. A known level within 50 keV above the isomeric state (i.e., E(IS) < E (level)
< E (IS + 50), and

3. For which there exists at least one gamma-ray deexciting this level with energy
< 300 keV.

C. SOURCES

References 4 through 7 were used as sources for the compilation presented in

Table 1.

D. EXPLANATION OF TABLE

Table 1 lists 80 isomers in 75 nuclei with 130 levels within the 50 keV range of the

isomeric state. The basic source of information is the latest edition of "Nuclear Data

Sheets," and the policies and conventions of that document are followed throughout.

For clarity, the properties for the isomer, for upconversion and for the upper level

are not repeated if the data refers to the same level as in the preceding line. Thus, for the

41.5 m isomer of 74 35Br there are two levels known within the 50 keV limit. One, 18 keV



above the isomer (at 212.9 keV) is deexcited by four gamma-transitions, and the other,

44 keV above the isomer (at 239.3 keV) is deexcited by five gammas.

For uncertainties and powers of tens, the following shorthand is used in the table:

* Uncertainty: 28.30 ± 0.15 is given as 28.30 15

* Power of ten: 9.2 x 10- 3 is given as 9.2 E-3

Also, because the personal computer used to prepare the table lacked the Greek

alphabet, the customary n -- pi and g. appears as u.

The information in the table is listed in 5 groups referring to: 1. The Isomer,

2. The Pumping Radiation, 3. The Potential Lasing Radiation, and 4. The Upper Level--the

level reached by the upconversion which is the potential lasing level, and 5. The Lower

Level of the lasing radiation.

1. The Isomer: A, Z, T1/2 define the nucleus and the isomeric state.

If two isomers are listed for one nucleus, these are indicated by
superscripts: 124 51Sb1 and 124 51Sb 2.

2. Upconversion:

E(keV) Energy required to excite the nucleus to this potential lasing level from the
isomeric state. Calculated from measured level energies.

LPi  Angular momentum and parity change needed in this upconversion.
Deduced from level properties.

3. Deexciting Transitions: All gamma-transitions deexciting this potential lasing
level are listed.

E(keV) Energy of the transition. If the gamma-ray (photon) has not been
observed, but the transition has been deduced from intensity balance in the 0
level scheme, or from observed conversion electrons, this is indicated in a
footnote.

IT(%) Transition intensity (Igamma + II.C.) in percent of total level decay. In all
levels listed in this compilation, gamma-transitions (photons + conversion 0
electrons) are the only competing methods of decay. Thus, all IT(%) for a
single level (upconversion), should add up to 100 percent. This intensity
is generally derived from experimentally measured relative intensities and
conversion coefficients. If the multipolarity of the transition or the relative

2



intensities are uncertain, the absolute intensity is given in parentheses. No
uncertainties are given for these quantities.

Mult. Multipolarity of the deexciting transition. If the multipolarity has not been
uniquely determined, but has been deduced from the level scheme, it is
given in parentheses.

ICC Total internal conversion coefficient of the transition for the multipolarity
indicated. In general, it is the adopted value given in "Nuclear Data
Sheets," either theoretical or experimental (the experimental values are
shown here with an experimental uncertainty). If the "Nuclear Data
Sheets" do not give an adopted conversion coefficient for the transition,
then the theoretical value from the current Nuclear Data Group (NDG)
program for theoretical conversion coefficients has been given. If the
transition is shown as a mixture of multipolarities, i.e., M1 + E2, then the

conversion coefficient for the predominant multipolarity is given and is
indicated by a subscript (e.g., 2 .15 ml).

Iph(%) Photon intensity in percent of level decay. If the absolute value of the
intensity cannot be derived because of lack of information, the
experimental relative intensities of the deexciting transition are given and
are so indicated with a footnote.

4. Upper Level:. The level reached by upconversion.

5. Lower Level: The state in which the nucleus is left after emitting the lasing
transition.

E(keV) Energy of the level.

JPi  Spin and parity of the level. The parentheses here indicate weak
arguments in the spin assignment as outlined in the "Nuclear Data
Sheets."

T1/2  Half-life of the level.

3
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U. SYMMETRY APPROACH TO ENHANCED
SPONTANEOUS DECAY OF NUCLEI

A. INTRODUCTION

The requirements for nuclear superradiance have now been discussed by Baldwin

and Feld (Ref. 8). The requirements are based on the approach of coupled Maxwell-

Schrodinger equations in a semiclassical model developed by Feld (Ref. 9) and references

therein.

Concurrent with the developments by Baldwin and Feld, we have considered the

* question of what all of this means for a gamma-ray laser. The questions of actual candidate

nuclei have, in part, been answered; the data for many "useful" levels is missing for states

in the vicinity of long-lived isomers (Re 186, Am242 and Ho 162 for example); yet, still no

known scheme allows for the successful production of a lasing transition from a long-lived

state. Nonetheless, Re1 8 6 looks quite interesting, as does Am 24 2 , for the possible

production of isotropic x-ray energy sources in plasmas. The possibility of lasing by

excitation from a ground state of a nucleus is certainly an interesting one; for this reason we

will consider some aspects of the theory of superradiance.

* The theory of superradiance is not necessarily well known to nuclear chemists and

nuclear physicists, but the underlying symmetry as first presented by Dicke (Ref. 10)

generally is. Consequently, we set out to see if a simple treatment of the effect could be

summarized using the group theoretical approach.

In proceeding, we note that there are still some differences between the original

approach of Dicke and the semiclassical approach. These distinctions, outlined in Ref. 11,

are (1) the effect arises from an assumed symmetry, (2) other than photon bosonic fields

can be considered (Ref. 12), and (3) other than totally symmetric states (i.e., subradiant

states) can enter [as recently seen in single-photon experiments (Ref. 13)].

Here we address item 1 in sufficient detail to show that the conditions for
"superradiance" in the group-theoretical approach are in general agreement with those

0 derived in the semiclassical approach. Specific problems in the gamma-ray regime are then
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addressed. We are also ultimately interested in more than two-level systems. The

symmetry approach can be extended to N-level systems through the extension of the SU(2)

Dicke symmetry to SU(N) and treating the many two-level systems as SU(2) subgroups
(which now, in general, do not commute with each other.) The dynamics is certainly

expected to be rich and important for nuclear problems since many-level schemes are more

complicated than simple, two-level systems.

Item 2 refers to the coherent pion emission problem, discussed in Ref. 11. Since

the extension of Dicke's approach to such problems has thus far been straightforward, no

further allusions to the "pion laser" are made here.

Item 3, the mixed symmetry states, may play a physical role. They all have reduced

radiation rates and must be considered in treatments of off-axis emission or dephasing.

A brief summary of group theory jargon is included in Appendix A, and textbook

descriptions of Dicke's model and the semiclassical approach are presented in Appendices

B and C.

Finally, we emphasize the symmetry aspects of Dicke's theory. We refer to the

results of his theory as "enhanced spontaneous decay" to avoid the experimental

observations called "superradiance" or "superfluorescence". Dicke's theory must still be
applied to particular models. For example, one can add to Dicke's theory stimulated

emission or absorption terms to take account of the radiating material being in some electric

field (e.g., self-generated). This can alter the pulse characteristics and lead, for example, to

ringing effects. These approaches (for example, mean field theories, Ref. 14) are still not

necessarily the causes of observed ringing. Ultimately, the semiclassical approach has best

treated the propagation effects; and most-particularly, the transverse field effect accounts

for the observed ringing in the two-level Cs system (Ref. 15). Thus, as far as

nomenclature is concerned, we use Dicke's original term of "enhanced spontaneous decay"

for the physical essence of the problem, "stimulation terms" for the effects of including

photon occupancy number in simple extensions of Dicke's approach (in one-dimensional

models), "superradiance" and "superfluorescence" for the actual effects which include more

detailed three-dimensional propagation, as originally intended.

Since, the photon absorption cross sections by nuclei in the gamma-ray regime are

so small, due to the short wavelength, the linear (whisker) geometry naturally arises, as

discussed in the final sections of the text. The linear geometry is also historically preferred,
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since practical problems, such as limiting heating effects in pumping, may also be lessened

in a linear geometry.

B. GROUP APPROACH TO DICKE SUPERRADIANCE

1. Objectives

In Ref. 10, R.H. Dicke presents an extensive study of enhanced spontaneous decay

(some states of which he calls "superradiant"). The basic premise in the work is that all

emitters (in the actual paper he treats molecules) interact with a common radiation field and

hence cannot be treated as independent entities. The key mathematical aspects of the theory

proposed by Dicke are summarized in Appendix B. The model can be used to simulate

some actual conditions to gain insight into "superradiant" models.

The advantages in constructing a simple model to examine aspects of all of the

possible states of the system as originaPy described by Dicke are summarized below:

1. It is useful to program Dicke's model and simulate the superradiant pulse
formation by observing decay from highest energy ("weight") states. This is
done to gain an understanding of the relationship of the group versus
semiclassical approaches.

2. It is useful to simulate pumping of the low-energy states to higher energy states
from some initial distribution and calculate the follow-on emitted pulse to
understand effects of incomplete inversion.

3. It is useful to derive analytical expressions in Dicke's approach to compare to
analytical formulae, where known.

4. The theory is inherently based on the symmetries PN (permutation group of N
objects) and U(2) (internal dynamical symmetry of the quantum mechanical
two-level system). Successive symmetry labels or "quantum numbers" are t

from PN and r from SU(2) (these are described in Appendix A). By
introducing operators affecting Ac and Ar transitions, one can introduce

"dephasing" or loss terms into the previous exercises (Nos. 1, 2, and 3), and
reexplore the superradiant pulse formation process.

41 Of the items discussed in the original part of the proposal, items 1 and 3 are

examined. Items 2 and 4 are qualitatively discussed.
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2. Summary of the Theory and Aspects of Mixed-Symmetry States

Consider an atom, A, having two internal states--excited and unexcited--denoted by
an index k (k = c or 13, respectively). Then all states of N-such atoms; completely and

simultaneously classified according to the permutation group PN of atoms with indices i

and the unitary group U(2) of internal states are denoted It r m>. This nomenclature is

discussed in greater detail in Appendix A. Here, t is a Young tableau label of PN while r

and m are U(2) group eigenvalues. Physically, r is descriptive of the relative phasings

between the individual wave functions of cooperating emitters, r is descriptive of the

number of cooperating emitters, and m is a measure of the population inversion. The U(2)

group operators are R+, R., R0 , and N. Hence r(r+1) is the eigenvalue of R2 and m is the

eigenvalue of Ro. The square of the matrix element, M(r,m), is proportional to the

transition rates between states of the system and is also significant:

M(r,m) = [(r+m)(r-m+l)] = I<t r m-1 h- kt r m>12. (1)

Then the lattice diagram (weight diagram) Fig. 1 is set up (illustrated for the case of three

emitters, see Appendix A for details on nomenclature):

The matrix element M(r,m) of the shifting generator does not allow for transitions

between the multiplets (depicted as columns) in Fig. 1. Physically, the matrix element is
proportional to the interaction with the electromagnetic field. Thus, r and r remain good

quantum numbers as long as the permutation symmetries and SU(2) symmetries are

unbroken. Only transitions depicted in Fig. 2 occur. Assume a spontaneous decay rate for
the transition of X0, then X(rm) = X(r,m)M(r,m), where X(r,m) is the spontaneous decay

rate which is now dependent on r and m. We can calculate the rates as illustrated in Fig. 2,

assuming for convenience that X = 1:

Figure 2 illustrates the totally symmetric irreducible representation (irrep) has

enhanced decays of 3X, 4X, and 3X faster than the other two two-level multiplets. For

small N this simple model is easy to program, and this is done in the next section. First,

though, it is clear even beforehand that the totally symmetric irrep is, from an engineering

standpoint, most favorable to laser developers. Note also that even N systems have a non-

decaying multiplet; all odd N systems decay, regardless of multiplet.
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r =3/2 r. 1/2 r -a 1/2 No multiplet
allowed in

m= +3/2 SU(2)

m =+1/2
S

m =-1/2

m -3/2

Figure 1. The eight states of the three-particle system illustrate the
classification of states according to the permutation group tableaux,

the cooperation number (r), and the inversion (m). The symmetric
multiplet is associated with Dicke superradiance. Mixed symmetry

states would have subradiant or reduced decay rates
corresponding to a Bloch vector of diminished length.

Sr= 3/2 r = 1/2 r = 1/2

m = +3/2 -

43X
m +1/2---

0Xl ix 1
m -1/2

3 X
m -3/2

Figure 2. Decay rates for the multiplets illustrated in Fig. 1 according to
Dicke's theory. The rates are listed as multiples of the spontaneous

decay rate (e.g., 3X means three-times faster, etc.)
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Later, we examine the pulse characteristics of the totally symmetric multiplet in

greater detail, using simple differential equations. These equations apply for cases having

larger numbers of cooperating emitters, where it is inconvenient to exploit the almost

continuous behavior of m. For large N systems we can substitute m = r cos 0 where 0 is

the angle between a vector of length /rri) and a z-component of length m. Then:

M(r,m) r I . r I - m (m-1)

=r 2sin20 + r cos0 + r

r2 sin20 (2)

Here I r . r I refers to the length of the vector which, of course, is r(r+ 1) in the quantum

case. For large r, the quadratic term overrides the linear term; but for small 0 the linear

term characteristic of the quantum approach (as well as the non-zero value for the angle)

insures that the pulse is initiated.

The intensity of emitted light (I): S

I = M(r,m) Io  (3)

is equal to the rate of energy loss. (Here E is the energy spacing Ea - Eb):

-d(mE)/dt = M(rm) 10

-d(r Ecos0)/dt = M(r,m) 10

-(dr/dt) Ecose + Er sine de/dt = r2sin20 Io (4)

At this point we can assume that without symmetry breaking effects, r always •

remains a good quantum number, and dr/dr = 0. We then get:

d0/dt = (r It/E) sine . (5)

By solving this equation, the basic characteristics of the pulse emitted from decay of the

highest weight state of the totally symmetric irrep are easily determined. (In general, a

model could start from a distributed set of initial states and pump up and relax. The

problem is then only slightly more complicated, but easily examined for small N and

perhaps analytic expressions exist for large N.)

Further details of enhanced spontaneous decay are discussed in later sections. Now

it is convenient to discuss the mechanisms by which non-ideal effects can be treated in the

Dicke picture. Detrimental effects can arise by considering transitions which change r,

transitions which change the tableaux symmetry, or the presence of other levels which
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change all quantum numbers. In general, the system may start from a distributed ground

state and be pumped up as illustrated in Fig. 3. This further complicates the pulse
formation process since cross-multiplet transitions occur both in pumping and decay.

r = 3/2 r = 1/2 r = 1/2

m =+3/2

m +1/2

m m-1/2

m = -3/2

Figure 3. Detrimental effects in pumping. Realistic effects, as discussed in the
text, can mix r-multiplets (ruining the ideal symmetry) and thus allow some
transitions between multiplets. Some of those transitions are illustrated

here where the system is being pumped up. The same intra-band
transitions also occur in deexcitation.

Qualitatively, effects which alter the simple model based on the totally symmetric

irrep in simple physically meaningful ways are as follows:

1. Restriction of the emission to a single specific direction, k. Then, for emission
in direction k' different from k, the states of r are not good states of r'. After a
single emission in direction k other than k', in the ladder, Ar = ± 1, 0 since
some state of r is a mixture of states of r'. In reality, many ladders can be
mixed and the more successful are probably the longest ones.

2. Deviations from the characteristics of pure two-level systems. Decay of state
"a" or state "b" to some state "c" leads to competing superradiant multiplets and
at the minimum, Ar processes. This is because, even in Dicke's approach,
non-commuting SU(2) subgroups of SU(N) enter.

3. Dephasing. This appears as a Ar process between multiplets of degenerate x,
assuming "special" phasings are associated with states of the mixed symmetry
irreps (irreducible representations).

4. Photon losses. Here, Am processes not contributing to the photons in the
pulse must be included to account for photon absorption in the medium.
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Lacking explicit treatment of these previous four realities, even in Dicke's picture,

we examine the characteristics of pulses from the totally symmetric irrep in the following

sections. The three-level system, approachable by using the algebra of the three SU(2)

subgroups of SU(3) is addressable using the background information summarized in

Appendix A. With these problems aside, the totally symmetric irrep is expected to give the

most optimistic results.

C. DICKE SUPERRADIANCE FOR THE CASE OF THE TOTALLY
SYMMETRIC MULTIPLET--STATISTICAL MODELS

1. Characteristics of Pulses •

The totally symmetric multiplet in the Dicke model is the unique multiplet labelled

by the cooperation number r = N/2 where N is the number of two-level atoms participating.

This multiplet has the largest r for a given N. Other multiplets have N participating atoms

but a cooperation number less than N/2. Thus, cooperation number and total participating

numbers are distinguished for other than totally symmetric multiplets.

The lattice or weight diagram for the totally symmetric irreducible representation

labelled by r = N/2 has 2r + 1 steps labelled by m. As previously noted, the decay rate for •

each step on the lattice diagram is given by X = X0 (r + m)(r - m + 1) where m is the lattice

step occupied previously in time and X0 will hence be set equal to one second (here we use

X to denote rates and the distinction from the wavelength is evident in context; these rates

are equivalent to the widths used in the previous section). Assuming that a photon from

each spontaneous decay appears at intervals 1/X, the number of photons in some time

interval At can be counted, so that is what we first do. Here At is a suitable fractional

multiple of the time duration of the complete pulse. For the moment, we assume that none

of the photons created in the decay interact with the atoms to produce stimulated emission

or absorption effects. Consequently, we are strictly treating Dicke superradiance or "pure

superfluorescence". Typical pulses in this approach are depicted in Fig. 4.

Alternatively, the statistical nature of the spontaneous decay rate can be incorporated

by introducing a normalized distribution function p(%,t) for each X; recalling X = X(m): S

p[R)] = X(m)e-X(m)t. The resulting pulse is then an ensemble average of many pulses,

each with counts collected in a set of common time bins. Results for a typical single

statistical pulse and an average of many pulses is detailed in Fig. 4 for comparison with the

2
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r41s PDb. Pulse
* E

z

0-x
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S Channel No. (counts in 5 ms bins)

Figure 4. Three statistical pulses and one most probable pulse are based
on a computer simulation for a small value of r.

* previous result. Here, the cooperation number is unchanged, and the agreement with the
"tmost probable" pulse shape is clear. By "most probable" pulse we are referring
specifically to the case where the successive time sequences At(m) for photon appearance
from state m is given by l/k(m).

6 As the r quantum number increases, the pulse duration decreases, as indicated in
Table 2.

Table 2. Cooperation Number and Pulse Duration

r IPulse Duration (ins)

1 1000
2 830
4 600

8 400

16 250

32 150

64 84
128 47

256 27

512 15

1024 8.0

2048 4.3

4096 2.3
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The pulse associated with r = 8192 is depicted in Fig. 5, and the strong r dependence of the
pulse duration is depicted in Fig. 6. For the "8192" pulse we observe a symmetric

distribution with delay times comparable to pulse width. The complete pulse duration is

1.3 ms.

Soo'

0
40W

0

0 2 4 6 8 10 12

Time (0.00125 s per bin in 10 bins)

Figure 5. A typical pulse shape for r = 8192.

-3

0

• 2

(D

0 1000 2000 3000 4000 5000
Cooperation number (r)

Figure 6. Pulse duration as function of r from the statistical simulations,
assuming a spontaneous lifetime of 1 s.
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The 1/r dependence of the pulse duration is seen in Figs. 7 and 8. As more easily

seen in the second of the two figures, the 1/N dependence is seen as an approach towards a

constant slope near the origin. Strong deviations in the points for r = 1 and r = 2 (and

smaller r in general) are observed due to the quantum effects which arise when the

r-dependent terms in the spontaneous decay rate are comparable to the r2 terms.

a .-m

1.o.

C
0.

0

0.20 ! ...

3.000 0.200 0.400 0.600 0.800 1.000 1.200
11r (inverse number)

Figure 7. The 11r dependence of the pulse duration (assuming a spontaneous
lifetime of 1 a) shows the crude 1/N dependence inherent In superradiance.

0.3

0.2-3

V

M 0. 1.
CL

0.00

0.00 0.02 0.04 0.06 0.08
1/r (Inverse number)

Figure 8. A blowup of the high r region on Fig. 7 depicting the near-linear
behavior for larger values of the cooperation number.
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2. Expressions for the Pulse Duration Time

A convenient empirical relation for the pulse duration time is At = 3.2 (/r)

(specifically, for a fit to a + b/r; a = 0.017 and b = 3.2). This is based on fits to the

previous curves.

For larger r it is much more convenient to exploit the almost continuous behavior of

m. In the simplest approach, where terms linear in r are dropped and the substitution m = r 0

cos 0 is made: dO/dt = (rXOJE) sinO, dr/dt = 0, r >> 1 (see previous section). The photon

emission rate is simply dO/dt = rsin 0. The pulse duration (Ate) associated with the time to

evolve from 01 to 02 is:

02 5

f sin- 10 dO = In [tan(02/2)/tan(01/2)] = r XoAt0 = a(0) (6)

01

Now we note that for 01 = 0 a singularity is obtained corresponding to an infinite pulse •

width. This corresponds in the classical limit to an untipped Bloch vector in a metastable

state--vertical and just waiting to fall. Once again, this is because we have neglected the

linear term in r as well as the finite but non-zero value for the initial angle. The additional

quantum term (sometimes referred to as the noise term) is sufficient to insure 01 is not S

zero. This naturally arises in Dicke's theory. Specifically, 01 = cos-1 (1/r + 2) - (2/N)1/2 .

We can test this expression using the characteristics of a typical statistical pulse.

Let us assume for the moment that the pulse is emitted, for the most part, between 01 = 200

(t/9 or bin 2) and 02 = 1600 (87c/9 or bin 8) as seen in the previously depicted "8192"

pulse. Then for this case a(0) = 3.5 (At = 3.5/r) is in agreement with the empirical fit.

We now consider a(0), which we refer to as an "angular scaling factor" in more

detail. For pulses between 01 and x--61 for various 01, we plot a(0). The dependence is

depicted in Fig. 9 for 01 near zero up to 01 near 0.5 7t. The dependence of a(0) is not

nearly as strong as the r dependence--graphically portraying the dominant 1/N characteristic

time scale of superradiance.

For the moment we use a simple numerical fit for the pulse angle scale factor: a(0) S

= 6.75 exp (-1.7 m) where m = 01/t, although the logarithm is more analytically correct.

Since the significant pulse width is expected around m > 0.4 we can estimate m such that

Atdelay -Atwidth. This occurs when exp (-1.7 m) = 0.5 or m = 0.4; consistent with the
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Starting angle (multiple of pi)

Figure 9. Behavior of the scaling factor from the statistical simulations.

* physically expected value. In summary, Atdelay = Atwidth - 3.4/r. For example, consider

the r = 8192 pulse previously depicted. The pulse width is roughly 0.5 ms, corresponding

to m = - 1/1.7 In (rAt/6.75) 0.3, suggesting significant pulse formation at an angle of

54' . The empirical delay time is: Atdelay - (6.2-3.9)/8192 = 0.28 is. These delay and

e. pulse width time periods are depicted in Fig. 10, along with the associated Bloch angles.

540

400

8000
*Delay Pulse Decay

Formation

- 000-

8 4000
C

a- 2000

0 - : J "

0 2 4 6 8 10 12
Time (0.00125 sec per bin in 10 bins)

Figure 10. Basic pulse characteristics and associated Bloch vector angles for
* the statistically simulated r = 8192 pulse.
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3. Empirical Estimates for Practical Values of the Cooperation Number

We can quickly get order-of-magnitude values for r using the empirical relations.

For a pulse of time scale At = 3.4/rX0 s, the complete light cone distance in two directions

is 6.8c/rXo = 1, (1 = length). Assuming Dicke superradiance occurs on length scales

governed by c, the self-consistent value for maximum r solves:

(7cX2) 1 n* = 2r , (7)

where n* is the maximum excited state atom density, X is the reduced photon wavelength,

X0 is the spontaneous decay rate for one emitter and the term in parentheses is the cross-

sectional area. This latter cross-sectional area multiplied by the cooperation length is
usually called the cooperation volume. Numerically:

r = X (3.4rcn*/X0) 1/2

.1 x 10- 5 (1/E) (n*/),o) 1/2 , (8)

where E is in MeV, X0 in s- 1 and n* in no./cm3.

In the x-ray region, E = 0.040 MeV and n* < 1023 no./cm 3 so r < 108 X0- 1/2. For

short-lived states (1 s-1 ) r < 108. For long-lived states, e.g., Lo = 10-2 s-1, r = 109 . For

large r, a slight correction to this empirical result is obtained from well known analytical
results discussed in Section G. For the case X.0 = 1 s-1; the cooperation time is 10-8 s and

the cooperation length is roughly on the order of 10 m (refined later). Here we note that the

atoms are, for the most part, in a perfectly straight line. If limited by sample size, r is

correspondingly smaller by the geometric size of the sample.

D. ENHANCED SPONTANEOUS DECAY IN THE PRESENCE OF
EXTERNAL OR SELF-CREATED RADIATION FIELDS

This section describes simple Dicke superradiator models calculated with the

programming assistance of John Neuberger. These should help in the understanding of the

features of Dicke superradiance. They include, for the most part, some aspects of many

previous ideas. The basic tenet of Dicke remains intact--"all emitters emitting to a common

electromagneic field" form a collective state wave function with respect to the field. The

pulses herein depict various features of the models and the chosen parameters are typical of

those for y-lasers. This work is not complete--other multiplets remain. The equations are

well suited for the treatment of very large values of the cooperation number in contrast to

the smaller values for the cooperation number treated in the previous section.

3
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The following models are particularly useful in the regime of interest to the gamma-ray
researchers.

1. Background for Dicke Superradiator Models

Consider the state jr m, p> (where p is the photon number occupancy) and the
* Dicke operators are a+pR. and apR+. As shown in Fig. 11, the "enhanced spontaneous

decay" rate is given by (r2 + r - m2 + m) and the net p-dependent decay rate is given by

2pm. Physically, the p-dependent decay rate is equivalent to 2m systems, each having

spontaneous decay rates dependent on p.

1 r m+l, p-i> Excitation:
t p(r-m) (r+m+ 1)

Ir m p> Deexcitation:
(p+1)(r+m)(r-m+1)

I r m-1, p+1> Net: (r 2+ r - m2 + m) + 2pm

Figure 11. Net decay rate, Including stimulated absorption and emission

• 2. The Simple Superradiance Limit

In this case:

dm/dt= -X (r2 + r- m2 + m), (9)

where the p-field plays no role. This means that emitted photons leave the system without

interacting with the emitters in the system. Such photons are called n-field photons in an

arbitrary nomenclature simply to distinguish "caity" photons from emitted photons. A
pulse calculated using this equation is depicted in Fig. 12 for r = 106 and X0 = 1 s.

3. Simple Superradiator in a Cavity

For a simple superradiator in a closed cavity:

drr/dt = -0 (r2 + r - m2 + m + 2pm) dp/dt = --dm/dt (10)

There is a simple expression for the maximum change of the Bloch vector angle. Since
p = N - m - r = 2r - m - r = r - m then dO/dt = 0 implies cosO - -1/3 or 0 - 1090 (closer

in practice to 1030). A pulse is depicted in Fig. 13 for r = 106 and in Fig. 14 the population

inversion is shown to hang up at about 1100. This provides a good check, at least on our

understanding of what should happen in this trivial model for this limiting case.
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Figure 12. A simple superradiant pulse for the case of r = 106 calculated using
the simple Dicke model. The pulse appears symmetrical, with the delay time

comparable to the inverse of r as expected from the previous sections.
Moreover, the area under the pulse is also comparable to r.
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Figure 13. The Intensity of photon emission into an ideal closed box for the
case of r = 106 reveals characteristics similar to that of the previous figure,
except the pulse width is severely shortened. The Bloch vector has hung

up at about 110°, just past superradiant emission (see next figure),
since stimulated absorption Is now overcoming the emission rate.

This simple limit provides a check on the trivial dynamical equations.
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Figure 14. In the Ideal cavity, the population of excited states decays quite
rapidly, but then hangs up just past the mn = 0 level. The rn-component

corresponds to an approximate Bloch vector angle near 1100, which is easily
derived to be a rough constant angle, regardless of cooperation number.

This provides a limiting case of the more complicated simple models.

4. Simple Superradiance in Fields Which Emit--Markovian Model

In considering two loss mechanisms for p-photons we can consider the following

coupled equations:

-dm/dt= O(r+m) (r-m+ 1) + 2XOp (11)

where

dn/dt = cp/L and dn/dt + dp/dt + dm/dt = 0 (12)

The basic features of these equations are summarized:

1. Stimulated emission and absorption are included in Dicke-superradiance via the
p-field number occupancy

2. The p-photon field appears adiabatically following the instantaneous evolution
of dm/dt (the emission process) and p-photons are lost at constant rate c/L

3. This set of equations cannot lead to geometric ringing unless p is fed from
some external source.
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There are two limiting cases worth noting:

1. In the case of an infinite length L, k = c/L = 0, dn/dt = 0 and the lossless
radiator in a cavity appears.

2. For c/L large dn/dt follows dm/dt and p -- 0, thus giving the coherently

spontaneously decaying "simple" Dicke superradiator.

Typical pulses are depicted in Figs. 15(a) through 15(f). The figures portray pulses from

samples of increasing length. Parameters are listed in Table 3. The parameters for pulses a

through e are repeated in the next subsection for the case of a Markovian radiator. We find
that as k decreases and X0 increases the trend is towards exponential decay, whereas for

decreasing k and increasing XO, the trend is towards "pure" Dicke superradiance. For the

case of r = 1.5 x 106 and k = 1.0 x 106; dn/dt, n(t), m(t) and p(t) are shown in Figs. 16(a)

through 16(d).

In this approach, dm/dt follows .he instantaneous p-field and not a p-field which is

averaged over previous magnitudes of dn/dt by some weighting factor. Thus, we must

consider a non-Markovian model which is the usual simple approach to dealing with this

problem.

5. Simple Superradiance in Fields which Emit--non-Markovian Model

In this case, the system decays at a rate dependent on the previous (weighted)

history of the system, thus physically reflecting, or modeling, effects due to the finite speed
of light. We consider X(s) = %o(r2 + r - m2 + m + 2pm) = Xo p(s) where m = m(s) and

p = p(s) where s is some unit of time. Then, weighting of previous decay rates according

to past history is achieved by the same photon loss factor k = c/L in the factor ek(t-s) to get:
t

-dm/dt = 10 kf exp [- k(t-s)] p(s)ds (13)

0
Still keeping the previous equations:

p + n + r + n = N ; dp/dt + dn/dt + dm/dt = 0 and dn/dt = kp (14)

we examine superradiant pulses for the conditions studied in the previous section. Figures

17(a) through 17(e) depict various pulses for the parameters in Table 4. With increasing
sample length, more pronounced ringing occurs. For the case of r = 1.5 x 106 and

k = 1.0 x 106; dn/dt, n(t), re(t) and p(t) are depicted in Figs. 18(a) through 18(d).

3
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* Figure 15. Views a through f depict pulses calculated according to a simple
Markovian radiator for the case r = 106 and varying values of the length and
spontaneous decay rates listed In Table 3. The sequence of pulses froma to e Indicates a trend towards a long exponentilal- like decay roughly followingthe ringing In the non-Markovian model of the next subsection. Pulse f is from

a radiator of length shorter than the radiator In a, thus depicting less of a taill* and closer behavior to the simple Dicke superradiator.
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Table 3. Parameters for Illustrated Pulses

Figurel15 k (x10-6) (s1 ) %0 (s_1)

a 1 1
b 1.5 0.67
c 0.5 2
d 0.1 10
e 0.05 20
f 100 1

for a - e, the product k.X0 is constant

.13

aC
0

S An

Time (s) Time (s)

zz

Time (s) Time (s)

Figure 16. The (a) quantities dn/dt corresponding to the emitted intensity;
(b) n(t) corresponding to the running sum number of emitted photons;

(c) m(t) z-component of the cooperation number; and (d) p(t) the photons
in the "cavity" are depicted for the case of r = 1.5 x 106 and k = 1.0 x 106.

The example shows the rise and fall of p-field intensity as the simple
radiator dumps its photons from m(t) to n(t).
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Table 4. Parameters for Illustrated Pulses

Figure 17 k (x 10- 6 ) (s- 1 ) X0 (s-1) _

a 1 1
b 1.5 0.67
c 0.5 2
d 0.1 10
e 0.05 20 -

the product k 1o is constant

S

zi!W a .C

zz

'- I,,, 1f 40

Time (s) Time (s)

jimi

,£ . b : l li"zM

Time s) Tze (s

ZO

g£ee

.5-0

Time (s) Time (s)

Figure 18. The (a) quantities dn/dt corresponding to the emitted intensity;
(b) n(t) corresponding to the running sum of emitted photons;

(c) m(t) z-component of the cooperation number; and (d) p(t) the
photons in the "cavity" are depicted for the case of r=1.Sx10 6 and

k=l.Oxl06. Ringing effects are indicated In oscillations of p(t). 0
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Five items are noted:

1. For s restricted to t rather than the interval (0, t); the adiabatic limit (Markov) is
retained.

2. From the integral expression for -dm/dt it is easy to show that the differential
equation has the following form:

d2 m/dt2 + k dm/dt = - X0 k [r2 + r - m2 + m + 2mp(t)] . (15)

This equation is identical to the Markov form except for second derivatives and
factors of k, which allow for the ringing. This is the "pendulum" equation.

3. For times t >> k-1 (kt >> 1) then s near t contributes strongly;
t t

kf ds exp [-k(t-s)] p(s) - p(t)exp(-kt) k f ds expks)
0 0

- p(t)[1-exp(-kt)] (16)

for p(t) slowly varying. Then very large kt implies -dndt = Xop(t) or:

dm/dt- X0 (r2 + r - m 2 + m + 2rp) (17)

This is the previous equation for the case where d2 m/dt2 plays no role. Since
d2 m/dt2 leads to oscillations; this a "no ringing" limit, i.e., normal Dicke
superradiant emission.

4. For comparable k-1 and t, significant "memory" is maintained, corresponding
physically to a situation where p-field photons have a significant effect for
some intervals of time.

5. Finally, we note that as d2 m/dt2 goes to zero, k plays no role. Thus, the
second derivative term and the memory (k) go hand in hand, as we should
expect.

E. CONDITIONS FOR GAMMA-RAY ENHANCED DECAY RATES

The conditions for gamma-ray enhanced decay rates have been listed previously.

They can be understood using the properties of the totally symmetric multiplet in Dicke's

model. In fact Dicke points out many of the requirements, and they can be found in his

paper or as summarized in Appendix B.

The conditions are easily seen. In the limit of large r, that is, for a large number of

cooperating emitters, we first evaluate the pulse angle factor, a(O). In order to do that we
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need to estimate the initial angle and final angle. As noted previously, the initial angle is

precluded from having the value zero. We denote as OD that particular angle between a

vector of length of r(r+1) and a z-projection of m = r. In a simple approximation,

OD = (2/N) 112 , as discussed previously. The pulse angle scale factor a(0) can now be

evaluated for 0 in the interval ODj to 7c - OD:

a(0) = In [ tan (02/2) / tan (01/2)]

tan (01/2) 01/2 1/2 k2/N) 1/2

tan (02/2) 2/02 2 (2/N)- 1/2  (18)

from which:

a(0) =_ In [ 2N] (19)

Much of what is described here is easy to understand in terms of the simple model (model 1

in the previous section) the case of Dicke superradiance with no stimulated emission or

absorption.

1. Effective Gain

There is an "effective gain" for an emitted superradiant pulse. To see this we can

take equation (6) and substitute r =1/7,0 and the cooperation time cc =At0 to get the very

simple expression:

r r c= r a(0) (20)

which now becomes:

,cc = (,r/N) 2 n [2N] (21)

Then, -c << , which for all practical purposes is the evidence for a superradiant pulse.

This implies that (1/N) 2 In [2N] is small or:

(/tc) = N/[2 In (2N)] >> 1 (22)

Since we can introduce a cooperation number Nc = n* X2X Ic and for L < lc (which is

expected to be the case in the gamma-ray regime) Nc = n*X2(27r)L. (For example we can

estimate lc - 3.8 m, as detailed later, whereas the current manufactured or experimental

length would be much smaller). If we now associate OR, the resonant absorption cross

section, with irX2, then:

(,/tc) = (otef L) / [2 In ( 2N)] >> 1 (23)
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where aeff is the effective gain per unit length, provided we associate aeff = ORn* L.

Clearly a gain in enhanced spontaneous decay is an awkward concept; if, on the other
0hand, we try to think of a gain per unit length for an "equivalent laser", a, then:

exp(aL) - (aeff L) / [2 In (2N)]

a = (il/L) In [N/2 In (2N)] (length limited)

a = (1/rc) [r/a(O)] n [r/a(0)] (cooperation length limited)

(cL) > In {N/[2 In (2N)] 1 (24)

where, depending on how you care to approximate,

• (aL) > In (N) (25)

[It is interesting to note in comparison to Ref. 8 that the gain defined in equation (24) is

really a log of the ever-present log term ln(2N), the latter log term effectively dropping out
to regive, for all practical purposes, the same log term.) Since Nc is expected to be - 108

in the gamma-ray regime (plus or minus a number of decades, depending on the

spontaneous decay rate); at_ is certainly greater than 10. We now examine the conditions

for y-ray enhanced spontaneous decay. (This is the equivalent (1/2) In N factor or "0" of

0other Ref. 8 Working in the coupled Maxwell-Schrodinger approach.)]

2. Condition for Gamma-Ray Superradiance

From:

• Tc = a(O)/XoNc , (26)

where:

xc = cooperation time

* X = spontaneous decay rate

Nc = cooperation number = 2r where r = Dicke multiplet,

and:

* pleX2 7=Nc=pcrcX2 t , (27)

where:
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le = c'c = cooperation length

p = number density of emitters

X = radiation wavelength,

then:

Nc = X [2pca(O) / X0] 1/2  (28)

For p percentage of emitters participating, then a general equation for Nc is:

Nc = 2 x 107 / E (MeV) [p/2,0] 1/2  (29)

3. Size of a Gamma-Ray Superradiator 0

Let us use Nc from above for the cooperation number and lc from above. Then,

crudely:

Ic = 75000 E (in MeV) (pXo) - 1/2  (30) 0

for E = 10 keV, XO = 1 s -1 and p = 0.25 the cooperation length lc becomes about 380 cm--

consistent with a strictly straight line geometry. For shorter lifetimes the cooperation length

is obviously less, for longer lifetimes the length is longer.

A quick summary of the characteristics of a superradiator in the gamma-ray regime
is made here. The characteristics are based on a superradiator comprised of one

cooperation length. The quantity E is the transition energy (in MeV), the quantity p is the

percent of emitters participating (taken as the percentage of complete maximum inversion

density, 5 x 1022 emitters/cm 3 ) and X0 is the spontaneous decay rate (s- 1 ). The angular

scale factor is assumed to be 25; it varies from 1 to 50.

Power (W) = 1.28 p/E independent of lifetime,

higher for lower E 0

Total Energy Out (J) = (3 x 10-6) (p/X )1/2  independent of E

higher for longer lifetime

Cooperation Length (cm) = 75000 E (pxo) - 1/2  dependent on both E and lifetime

shorter for lower E

longer for longer lifetime
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Number of Emitters (no.) = (2 x 107/E) (p/%0)1/ 2  dependent on both E and lifetime,

increases with lower E,

increases with longer lifetime.

Figure 19 presents the results.

F., COMMENT ON COOPERATION, CAUSALITY AND VIOLATION OF
MICROSCOPIC CAUSALITY

Dicke says little about upper limits on the cooperation number as set by

macroscopic causality. One could argue that cooperativity is governed by the deBroglie

wavelength of the emitted boson. This would be a very bad situation for gamma-ray

lasers. Thus, it is assumed by most, as was done here, that the volume of cooperating

emitters is set by ct for some time c related to the lifetime of the emitter or collection of

emitters. There are suggestions that microscopic causality is violated* and this shows up in

* the shapes of lines (particularly the Compton scattering terms). The time scale for this

violation is on the order of the time required by light to travel the "size" of the elementary

particle. This size is related to the spatial extent of the particle. That size, if estimated from

the width of the free particle Newton-Wigner wavefunction (a spatial wavefunction in the
0 Foldy-Wouthuysen representation for the position of a free mass), is roughly h/(2E) where

E is the total (relativistic energy). (Here we also assume the particle behaves in accord with

the Klein-Gordon equation, i.e., we do not consider here Dirac or Weyl particles.)

The quantity t arises quite naturally in the pre-acceleration problem, as well as in

0 the standard quantum limit for position measurements of massive particles. For the
massless photon it is = h/2p. For times roughly less than this, microscopic causality as

well as the standard quantum limit may be violated; but these are very, very small

distances. Consequently, we must assume that Dicke's effect are governed by macroscopic
0 causality, since limiting it to distance scales where quantum effects (spatial extent of

wavefunctions) play a role appears much too restrictive, given published experimental

results.

* C.L. Bennett, private communication (results to be published in Phys. Rev. A.).
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Figure 19. Superradiating Operating Region. The operating region Is
Illustrated for the conditions and assumptions discussed In the text
with p = 1. The power and total energy out are for the case of one

cooperation length. The cooperation lengths are Indicated
on the curves for a given lifetime and transition energy.•

44



G. CONCLUSIONS

Some distinctions remain with respect to the semiclassical electromagnetic field
approach to superradiance and the somewhat more general approach of Dicke. In

particular, the symmetric multiplet results agree with the semiclassical approach. More

specific aspects of the pulse (such as ringing) are determined on geometrical features of the
particular radiator. Although two types of ringing can appear (transverse effects or photon
field "memory" effects in stimulation terms) it is generally accepted that transverse effects

lead to observed ringing. Regardless, the conditions for gamma-ray superradiance remain,

and they are not easy conditions to achieve.
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III. EVALUATION AND COMPARISON OF

SUPERRADIANT MODELS

A. INTRODUCTION

It is generally expected that if a gamma-ray laser is developed it will probabiy emit

in a superradiant mode instead of a stimulated emission mode (Ref. 1). Trammell and

Hannon (Ref. 16) investigated the emission characteristic of inverted nuclear populations

and described two extreme types of possible emitted pulses (1) a pulse obtained from a

high gain nuclear amplifier due to stimulated emission (SE) of nuclear transition and

(2) a superradiant (SR) pulse emitted in a cooperative fashion by the inverted nuclear

population.* It has been pointed out on several occasions (Refs. 17, 18, and 19) that SE

and SR are closely related, they are, in fact, two distinct limiting cases of the same

phenomena. SR is the transient limit of cooperative emission and SE is the steady state

limit. Under appropriate conditions these two processes can interfere and produce a

ringing phenomena (a sequence of sharp pulses decaying in time). "Pure" superradiance,

on the other hand, produces a single pulse and a single-pass laser also produces a single

pulse.

Superradiance has been observed in atomic and molecular systems and the

phenomena have been explained theoretically (Ref. 20). An excellent discussion of the

experimental results is presented by Q.H.F. Vrehen and H.M. Gibbs (Ref. 21) and of the

present state of theoretical understanding by M. Gross and S. Haroche (Ref. 22) and

M.F.H. Schuurmans, Q.H.F. Vrehen and D. Polder (Ref. 23). A cooperative

phenomenon with nuclear transitions, but not superradiance or superfluorescence, has also

been observed through the shortening of the lifetime of a nuclear state (Ref. 24). Just as

Whereas most authors use superradiance to refer to all phenomena where radiation is emitted
cooperatively and the intensity is proportional to N2, where N is the number of atoms or nuclei in the
cooperative volume, Bonifacio and Lugiato (Ref. 17) distinguish between radiation emitted by
coherently prepared systems and with a macroscopic dipole moment initially, which they call
superradiant, and incoherently prepared systems which do not have a macroscopic dipole moment
initially but interact through normal fluorescent decay to evolve a macroscopic dipole which then
radiates coherently in a cooperative mode.
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the observation of resonance in nuclear systems requires special conditions which are more

stringent than in atomic systems, the realization of superradiance on the nuclear level must

overcome restrictions that are often not important in atomic and molecular systems. Some

special consideration has to be made to crystalline structure and its effect on SR, the

M6ssbauer and Borrmann effects, attenuation of the beam due to inelastic scattering,

destruction of resonance due to inhomogeneous broadening, and relaxation effects.

Our purpose in these investigations was to determine the state of the theoretical
understanding of superradiance in general and to what extent the phenomena that are

expected to affect nuclear superradiance have been incorporated into the theory. In order to

develop a theoretical structure to study these effects, we worked in the framework of the

quantum mechanical Bonifacio-Lugiato (B-L) model (Refs. 17 and 25), which seemed

most appropriate because it was derived from general quantum, mechanical principles and

thus could accommodate nuclear conditions even though it was clearly restricted to a few
modes. This study checks the region of applicability of the (B-L) model, compares the

(B-L) model with the more restrictive but mathematically more tractable diffusion equations

of Narducci, et al. (Ref. 26), investigates the extent of quantum fluctuations under different

initial conditions and during the time development of the superradiant pulses. The simplest

superradiant models are based on the semiclassical pendulum equations. These were also

compared with the quantum mechanical calculations.

This chapter provides a thorough analysis of some of the assumptions of B-L

theory, shows real instabilities in the dynamics and identifies the source of the instabilities.

Besides the well-known weak points of the B-L theory such as the assumptions of few

modes and the independence of modes, the theory also does not easily allow for the

calculation of effects due to competing transitions (internal inversion, emission with recoil,

etc.) and transport effects (photoelectric absorption). Other theories have been developed

which are based on the Bloch-Maxwell equations and allow for the inclusion of quantum

initiation statistics and modeling of the fluctuation statistics. This is not of particular
importance or interest to the -ray laser problem at the present state of sophistication and

development. What is of interest is that these theories can deal in a straightforward way

with the phenomena of competing transitions and photon transport in the medium; two

problems of great insignificance to the -ray laser feasibility study. Further work should be

devoted to the exploitation of these theories in the 7-ray laser problem.
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B. THE BONIFACIO-LUGIATO MODEL FOR SUPERRADIANCE

1. General Characteristics of the Model

The extensive literature on superradiance offers a fairly detailed physical

understanding of the phenomenon, which is due to the cooperative behavior of identical

atoms in a configuration satisfying certain well-defined conditions. However, it is not yet

clear whether any of the proposed mathematical models of superradiance is accurate enough

to give reliable quantitative predictions of effects in nuclear rather than atomic emission

levels.

The model that appears to be the most complete, with the fewest ad hoc

assumptions, is the one presented by R. Bonifacio and L.A. Lugiato in Ref. 17. It

includes (non-relativistic) quantum effects, line-broadening, and (non-Markovian*)

stimulation of the atomic system by the spontaneously emitted photons.

The only significant ad hoc assumption in the model appears to be its restriction of

the electromagnetic field to a pair of independent resonant modes. The authors justify this

assumption by limiting the geometrical configuration to a needle-shaped cavity which, if

thin enough, will support just two identical endfire waves propagating in opposite

directions.

However, self-consistency is the only justification offered for treating the modes as

independent. Doing so has the advantage of reducing the analysis to considering just a

single mode for which the equivalent inverted atomic population is equal to N/2, where N

is the actual population, and the equivalent interaction coupling constant is equal to go 2,

where go is the actual resonant mode coupling constant.

On the other hand, before invoking the assumption that the two modes can be

treated separately, B-L show that their model implies two basic conservation laws. One

preserves the balance between emitted radiation and stored energy, and the other preserves

the Dicke cooperation eigenvalue defined in terms of the time-varying atomic dipole

polarization and population inversion states.

B-L use the term "Markovian" in reference to a system that has no memory of prior interactions. The
term implies that differential equations rather than differentio-integral equations, which the non-
Markovian case would require, govern the operator expectation values.
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The first equation has the form

d { a [<At(a) A(cc)>(t)] +<R 3 >(t)}dt a -k o ,  -Ao

=-2K < A [<t (a) A(c) >(t)] (31
a = ko, -ko

where A(ko) is the resonant mode of the internal field, ko is the vector wave number at

resonance, R3 is the population inversion, and K (given by c/2L, where L is the axial

length of the active volume and c is the velocity of light) is the reciprocal maximum transit

time of photons in the active volume. The brackets < > refer, as usual, to the expectation

value of the operator that they enclose; and parentheses ( ), to a functional dependence on

the independent variable that they enclose. The second equation, in which R+ and R- are

collective dipole moment operators, has the form

d I [<R (a)R - (a)>(t)] +<R2>(t)-<R 3  t)} 0 . (32)
L" a =k, -ko

I

Any Hamiltonian system would imply the first law. The second is analogous to

and formally identical with the standard conservation of angular momentum (resulting in

this case from a collection of pure spin states) when the total angular momentum is

identified with the Dicke cooperation eigenvalue associated with a collective total angular

momentum (spin) operator R, and the angular momentum vector components are identified

with R3 and the real and imaginary parts of R+.

The conservation laws are therefore physically reasonable in their own right. In

fact, they appear to be quite general and could be regarded as essential requirements for any

model based on the collective behavior of identical two-state atoms.

From their general master equation, specialized to the case of identical,

independent, single-resonant modes, B-L also derive another equation involving the

expectation values of the atomic and electromagnetic field operators:
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<Rk3> (t) + (K +~- ~ t
2

e T2 [<R+(oR-( a)> (t) + 2 < (A (a) A(a) R3 > . (33)
aczk-ko

where v is the volume of the active region and T2 is a time constant due primarily to

inhomogenous line broadening. The unknown quantities appearing in equation (33) and

the two conservation laws (1) and (2) are the photon number expectation <A" A>, the

atomic inversion expectation <R 3 >, the photon number/atomic inversion correlation

<At A R3>, and the fluctuations <R+ R->, <R 3
2> of the atomic dipole/inversion vector

components.

Although equations (31), (32), and (33) derived from the B-L model do not form a

complete set of relations for all of the explicitly involved quantities that must be taken as

independent in a quantum mechanical treatment, in the semi-classical approximation they

reduce to a differential equation, similar to that derived from classical mechanics for the

motion of a pendulum, and a corresponding energy relation which, together, do form a

closed system:

t<A* (a) Aa) > (t) () e_ 2

a=k,, -ko 4g

4(t)-& - e r2sin (t) = 0 , (34)

where 0(t) is a modified Bloch angle defined by

< R3 > (t) = [1 + Ncos 0(t)]/2 (35)

With these two relations, calculating the population inversion and the emitted

electromagnetic radiation, given by
t

1(t) = KVg ()]
_ e2

2 e, (36)

as functions of time is comparatively simple.
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Thus, where the semi-classical approximation is valid, the B-L model gives a firm

footing to a numerically tractable differential equation, permitting straightforward

calculations of the most important quantities associated with superradiance. The equation
includes line-broadening and accounts fully for the effects of atomic stimulation by the local

field which is due to spontaneous emission by the initially excited atoms.

2. Comparison with the Feld-McGillivray Model

Because the semi-classical approximation offers a practical avenue for numerical
calculation, it leads to quantitative predictions that can be compared with experiment. For

this reason, as well as the fact that it appears to be valid in very general circumstances, it

has been the favored approach in such enterprises, in particular, those of M.S. Feld and

J.C. McGillivray.

By invoking the semi-classical approximation from the start, Feld and McGillivray

are able to include explicitly the spatial effects of a propagating electromagnetic field and
atomic polarization in their calculations. This mechanism leads to the prediction (Refs. 18
and 28), already observed experimentally, that ringing will occur in the emitted field under
appropriate conditions.

However, the B-L model, although it does not explicitly involve spatial

considerations, also predicts ringing by virtue of a mechanism that is ultimately due to the
propagation of photons in the polarized volume. In place of the spatial reference, the model

includes the parameter K defined by the propagation time of a photon moving across the

active volume. The value of K determines whether all emitted photons leave the volume, in

which case ringing does not occur, or whether some are absorbed, reexciting a portion of
the atoms that have dropped from the inverted to the ground state, in which case ringing

does occur.

Equivalently, a critical relation

Kc >> 1

involving K and another quantity tc, called the cooperation time, determines whether the

time-dependent interaction between the atoms and the local field is Markovian (large KTc)

or non-Markovian in nature. In addition to cooperative spontaneous emission, which is the

sole effect in the Markovian case, the non-Markovian interaction causes the local field to

stimulate the atoms, thereby producing the observed ringing effect.
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In its basic form, the Feld-McGillivray model assumes a single-mode electro-
magnetic field. Since this is the only ad hoc assumption in the B-L model, with the semi-

classical approximation it should lead to the same results as the Feld-McGillivray model

when equivalent physical parameters in the two models have the same values.

References 18 and 28 claim that agreement with experiment depends on not

assuming a constant average photon propagation time but rather requires taking into

account the trarsverse distribution of the electromagnetic field. Nevertheless, the B-L

model of Ref. 25, which violates this precept, apparently does predict the gross

experimentally observed behavior of superradiant emissions. It is hard to believe that the

detailed spatial distribution of the transverse electromagnetic field could be known

accurately enough to distinguish between the abilities of the Ref. 25 and Ref. 27 models to

predict experimentally observed pulse shapes.

On the other hand, the single pulse experiments of Gibbs et al.(Ref. 28), the more
recent two color experiments of Florian, et al.(Ref. 29) and the experiments studying the

transition region between superfluorescence - amplified spontaneous emission of Malcuit

et al. (Ref. 30) require "a more detailed theory" for this explanation., This is provided by

the Haake et al. model (Refs. 31, 32) which will be investigated in future work.

3. Validity of the Semi-Classical Approximation

Section C will present some numerical results obtained from the B-L model with the

aid of approximations from Ref. 25 and 17 that, unlike the semiclassical, preserve first-

0 order quantum mechanical effects. Those results indicate the presence of large quantum

fluctuations during the time period when most of the radiant pulse energy is emitted. This

is somewhat disturbing because the validity of the semiclassical approximation over any
time interval appears to depend on quantum fluctuations being small enough to be neglected

* during the interval.

In Ref. 33 Bonifacio et al. report a similar finding derived from an earlier

(Ref. 34), more primitive version of the B-L model: one that does not include stimulation

effects. Physically, the earlier model (which is Markovian and is a limiting form of the

* more sophisticated version as the ratio of the cooperation time to the photon propagation

time becomes large) differs from that of Ref. 27 by virtue of the fact that the radiated

photons leave the active volume before they can interact with the atoms. As a result, they

follow the atomic state changes adiabatically and do not produce a ringing effect in the

* emitted pulse.
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With the earlier model, the authors are able to show (Ref. 33) by direct calculation

that quantum fluctuations are large when initially the atomic system is totally inverted. But
when the active population is sufficiently large and initially less than totally inverted, their

calculations show that the fluctuations are small. They also demonstrate that, consistent
with this result, the semi-classical approach is valid whenever the initial atomic system is

less than totally inverted.

Although the results in Ref. 33 appear to validate the use of the semi-classical

approximation to predict spontaneous cooperative radiation whenever the initial state of

atomic inversion is not due to a ic pulse (which would be necessary for total inversion of

the atoms), the more sophisticated Ref. 25 model does not necessarily lead to the same

conclusion when non-Markovian effects are important. This puts the validity of the semi-

classical approach in doubt during the time period when most of the radiation takes place.

Unfortunately, the region of validity of the Ref. 25 approximations, which take into

account quantum mechanical effects, is, itself, uncertain, at least for the case in which the
process is non-Markovian. Thus, calculations based on those approximations cannot be

used directly to assess the accuracy of the semi-classical approach over the questionable

time period.

To take into account quantum fluctuations in the non-Markovian case, B-L make

two approximations. One is the Born approximation which, without some additional step,

such as invoking the semiclassical, does not lead directly to a closed system of equations

for expectation values of photon and atomic operators.

In the Dicke state representation, the Born approximation leads at first to a finite

system of integro-differential equations for the occupation probabilities p(m,t) of the Dicke

state basis vectors 1tm>:

2g 2 t d -(t+s)/2"T*-K(t-s)

0

{g(m) p(m,s) - g(m+l) p(m+l,s) + [g(m) + g(m + 1)]N (m,s)

- g(m+l) N (m+l,s) - g(m+) N (m-l,s) + gl/ 2 (m) g1/2 (m-1) L (m,s)

- 2gl/2 (m) g1/2 (m+l)L (m+l,s) + g1/2 (m-l) g1/2 (m+2) L (m+2,s) . (37)
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where
I fo 1 I~m<N

F( N+m)( -N-m+1) for 1 m Ng 12 =2 - -2
0 otherwise,

N(m,t) is the photon number expectation for the inversion state m, and L(m,t) is the

expectation value of an operator derived from the interaction of the electromagnetic field

with the atomic dipole operators R+, R-. Unfortunately, the number of unknown

quantities to be determined from equation (37) is larger than the number of equations in the

system.

When the authors enlarge the system to include time derivatives of the unknowns

other than the Dicke state occupation probabilities, the resulting set of equations is still not

closed because it contains new unknowns, consisting of higher order moments of the
photon and atomic operators. Obviously, repeating the process indefinitely will result in an
infinite hierarchy of (finite) systems of equations, involving moments of ever increasing

order.

The authors observe that a simple way of getting a closed system is to drop the

photon expectation values and all second-order moments from the first set of equations in
this hierarchy, involving time derivatives of just the Dicke state occupation probabilities and

the photon number expectations. However, that procedure should be valid only under
conditions that would justify substituting the earlier Markovian model. It would therefore

add nothing new, serving only to verify that their earlier model is a limiting case of the

more general non-Markovian model.

Their next step is to retain the equations involving time derivatives of both the Dicke

state occupation probabilities and the photon expectation values, but to drop all second-

order and higher moments. The result is a larger, but closed, system:

55



pLg 0t) 2g)°2
t= - ds e K(t-s) - (/+s) /2T;

o f

{g(m) p(m,s) - g(m+l) p(m+l,s) + [g(m) + g(m+l)]N (m,s)

-g(m+l)N (m+l,s) - g(m)N (m-l,s) } ,

(m,t) = (-2KN (m,t) + ds e - (S 2

0

{g(m+l) [p(m+l,s) +N (m+l,s) - N (ms,)]} (38)

Significantly, the equations resulting from this approximation imply a relationship

between atomic and photon operator expectation values that is also implied by the exact

(i.e., with no approximations) operator equations of the model. Therefore, the three

previously discussed equations, (31), (32), and (33), follow from (38). In addition, (38)

guarantees conservation of probability: the sum of the Dicke state occupation probabilities

satisfying (38) must remain constant over time.

Because the approximate equations yield the basic conservation laws, it might be

expected that their solutions would be physically well-behaved. However, numerical

calculations indicate otherwise.

After a certain time interval, before the emitted pulse reaches its maximum

amplitude, quantities derived from the approximate solution become non-physical in at least 0
two respects. First, although conservation of total probability is still satisfied, individual

Dicke state occupation probabilities become negative. Second, although conservation of

energy is still satisfied, individual Dicke state photon number expectation values also

become negative. 0

The case in which the number of atoms in the active volume is limited to two is

simple enough to be treated in detail analytically if inhomogeneous line-broadening is

neglected. An investigation of it using the Laplace transform reveals that all states below

the maximum Dicke occupation number (which is two in the case considered) exhibit a

resonance phenomenon; i.e., some of the transformed solution functions have double

poles. In the inverse transform domain such a function must have a factor proportional to

the time variable.
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In the absence of double poles, when parameters are such that ringing does not

occur, the solution functions decay exponentially with time. When the converse is true,

i.e., parameters are such that ringing does occur, the solution functions have factors that

are linear combinations of trignometric functions of time. At least in the second case, the

additional time variable factor imposed by a double pole guarantees increasingly larger

oscillations with linearly increasing amplitudes that must eventually produce negative

expectation values.

In principle, a similar analysis for an arbitrary number of atoms could be carried out

in the same way, using the Laplace transform, since the equations can be treated recursively

in pairs, no matter what the total number of atoms may be. Because of the symmetry of the

inversion operator eigenvalues about zero, the coefficients due to the lower Dicke states

will always produce double poles for the transformed solution functions, just as in the case

of two atoms.

In fact, in Ref. 33 the authors make the same observation in connection with the

earlier Markovian model, i.e., that due to this coefficient symmetry, double poles must

always occur in the transformed solution functions. However, in Ref. 33 the remark is

made in passing, without noting the consequence that, in approximate solutions for a more

general model, such resonances may lead to physically impossible negative expectation

values.

C. CALCULATED RESULTS

In the previous section we discussed some of the problems involved with the

various treatments of superradiance, emphasizing the B-L model. In this section we

describe the calculations performed to check some of these interesting points, in particular

(1) the relationship of quantum fluctuation to the pulse shape, (2) the justification of the

semiclassical approximation, and (3) the limitations of and differences between pulses

calculated by means of different approximations.

In all cases, the geometrical model assumed is of a long acicular shape, with the

diameter D << L, the length, as shown in Fig. 20.
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Figure 20. Geometry of the Superradlator Showing the Two Possible
Modes of Emission

The calculations are actually done for one of the possible emission modes, right 0

emission, as shown in Fig. 20. The nuclear model consists of an energy level structure as

depicted in Fig. 21, with the Dicke quantum states Ir,m> satisfying the eigenvalue

equations

R2 Ir,m>=r(r+ 1) Ir,m> 0

R3 ir,m>=m lr,m>

rN
m=r

r=N-1
m =r-1

r =1
m =r-2

* * r=0
m:0 see•o

* I

m -- (r-2) ,

m =-(r-1)

m - -r ,

1-1647-3M

Figure 21. Dicke Superradiant Model Showing the Various
Multiplets of 7N two-level Resonators

where r is the cooperation number ranging from 0 or 1/2 to 1/2 N, and m is the energy

eigenvalue restricted to the range (-r, +r). The Bloch states which are fully symmetrized

states if the two-level nuclei are defined in the subspace of cooperation number r as
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m=-r

r 1/2 1 rm 1 r-m -i(rm)0 (9

m = -r

where 0 and (p define points in the spherical coordinate system with 0 = 0 corresponding to

the south pole as shown in Fig. 22.

BLOCH VECTOR

1-1 6-7-2M

* Figure 22. The Bloch Sphere
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For convenient reference, the parameters useful in the description of superradiant

phenomena, together with their definitions, are listed in Table 5. The conditions for

superradiance are
K-1 <C'R -5 T

A phenomena sometimes referred to as pure superradiance, which produces a single

pulse, is observed when S

Kc >> 1.

This occurs because the photons escape so fast from the volume that they do not stimulate

emission. Multiple pulses are obtained when 9

Kzr= 1 .

In this case, TR = 'c, the radiation field can interact with the atoms or nuclei and the

character of the resulting emitted pulse is due to both cooperative emission and stimulated •

emission and absorption.

We first describe the superradiant pulse shape obtained from the diffusion equation

derived by Narducci et al., as mentioned earlier. The diffusion equation is derived from the
B-L theory in the limit K -+ ** and T -+ oo so that there is no interaction of the 0

cooperation emission process and stimulated emission. We assumed the initial distribution

to be normal with variance d 2 so that the probability of occupation of a Bloch state is given

by

- P(O) e (0 - 70)2 /a 2 (40)

Our calculations were performed with a computer program SRI described in Appendix E.

Figure 23 shows some calculated results of this superradiant pulse obtained from the

diffusion equation for N = I to 106. Note the change in the shape of the pulse as N

decreases. For N = 102 to 106, the pulse is well-developed and is characterized by a delay

time TD and a pulse width TR, both proportional to N 1/ 2. On the other hand, for low N and

in particular for N = 1 and a large, the pulse is exponential and does not exhibit cooperative

effects and, in fact, reflects independent single-particle emission.
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Table 5. Table of Parameters Describing Superradiance

Parameter Definition Description Reference

= .C (C pyx,) maximfu~ m superradant rat A-C*

N* (cy Ap maximum cooperation number A-C*'

7D Ncyc 2 enhanced emission rate of Nc resonators A-C

.. i....... (ck 1.L2I2fi)1,2  coupling constant B-L

(V) 1 /2  cooperation time B-L

TRduration time of pure superradiance B-L
PX2L

2tR1m N delay time, or reduced time during which B-L
_________ _______________ pure superradiance reaches its maximum ______

2

'TO CX- lifetime of isolated resonator -

K photon escape rate B-L

kjT photon escape rate (in units oftc) B-L

2L

k2 T~ .Cinhomogeneous line broadening B-L
T2

_________ ________________equivalent rate _____

T______________ inhomogeneous linewidth dephasing time B-L

LIST OF PRIMARY PARAMETERS
N =number of resornators (nudlei or atoms) in p- electric dipole moment

volume v c - speed of light
p - density of resonators - N/v y . emission rate of isolated resonator

X =wavelength of emitted radiation A . cross section of window of length L
X0-wavelength at resonance -t= lifetime of isolated resonator

k . 2r wavenumber v - volume occupied by radiators.

*F.T. Arrecchl and E. Courtens, Phys. Rev. A, 2 (5), 1730, 1970.
R, Bonifaclo and L.A. Luglato, *Cooperative Radiation Processes in Two-Level Systems:
Superfluoresoence Il," Phys. Rev. 12 (2), 587-598, August 1975.
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To study superradiance in the more complex regime, where emission by

cooperative phenomena and stimulated emission interfere, we solved equations (8)

numerically. The program (SR 2, Appendix F) calculates the probability of the occupation

of the Bloch states P(m') and the electromagnetic field states N(m) or Q(m') as a function

of time.* The calculation is done for arbitrary initial distributions P(m) and N(m) and

arbitrary K and T;. The cooperation number N is a constant of motion; thus the dynamics

are restricted to the first ladder of the Dicke states as shown in Fig. 21.

Figure 24 shows some characteristic pulses obtained with the Master's equation

treatment of Bonifacio and Lugiato in the region of kl > ko, kl = ko and kl < ko, where

ko = 2 2 and corresponds to the K value in units of rc at which ringing first occurs (see

Appendix E). Note the appearance of a single pulse in Fig. 24a, corresponding to the pure

superradiant region and ringing, or multiple pulses, when stimulated emission interferes
with superradiance, Figs. 24b and 24c.

The effect of the coupling constant g.' = 2 g. on the superradiant pulses is

shown in Fig. 25 where go' is varied from 0.051 to 0.817, effectively changing the

cooperation time since

* c -L V 1/2 (41)c - 0go )

The master equation formalism allows one to investigate the interaction between the photon

field and the master system through equations (8). The results shown up to now assumed

that N(m) = 0 initially, thus the photon field was not activated. Figures 7a through 7f

show the superradiant emission when N(m) = 0 initially. Notice that as the initial value

N(m) increases the emission which is obtained from Y N(m) starts at low values (Figs. 26a

and 26b) and reverses to full ringing pulses which start at high values initially. There is a

phase change in the ringing phenomena with the transition characterized by a decaying,

slightly wavy pulse (Figs. 26c and 26f).

A note on notation. In this chapter we use p(m) and N(m) for Dicke state occupation probability and
the photon number expectation value when the basis system varies from m = -r to +r. When the basis
system is m' = 1 to N + 1 we use P(m') and Q(m') for these quantities. Also, K = c/2L is used for the
photon escape rate in c.g.s. units but kI = Krc is used when it is given in terms of the cooperation
time.
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08 2.4 4J 7.2 9.6 12. .05 2.4 4.8 7.2 9.6 12.

wb)
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3

05 2.4 4.8 7.2 9.1 12. .05 2.4 4.8 7.2 9.8 12.

TIME IN UNITS OF THE COOPERATION TIME'r
2-2-87-4

(a) 0(j) = 10-4, (M-) = 1()- 6

(b) Q(1) = 5 X 10-4, Q(M-) = 10-6

(C) 0(j) = 10-3, Q(M,) = 10-6

(d) Q)(1) = 5 X 10-3, Q(m') = 10-6

(e) Q(1) = 7.5 x 10-3, Q(M') = 10-6

(f) 0(1) = 5 x 10-4, 0(m') = 5 x 10-5

Figure 26. A study of the effect cn the superradiant lineshape of the init I
photon field distribution or 0(m') for the case N = 100, P(m') = 0,

m'=5, P(5) = 1, kj = 0.0269, k2 = 2 x 10-20 in.
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We have observed during our investigation of the B-L model that under some
40 conditions the calculated results would oscillate violently and even blow up. We suspected

that this could be caused by numerical error (a truncation made by B-L) as discussed in

Chapter II. In order to examine this problem, we solved equations (8), analytically for the
case N = 2 and showed that the negative probabilities and blow up were also obtained from

that solution. This is discussed in detail in Appendix D.

The numerical solution and the analytical solution gave identical results. Three

emission pulses calculated for N = 2 are shown in Fig. 27. For the initial conditions
P(l) = P(2) = 0, P(3) = 1 as shown in Fig. 27a and for P(1) = 0, P(2) = P(3) 1
as shown in Fig. 27b the probability goes negative, whereas for P(l) = P(3) = 0 and
P(2) = 1, a physically meaningful solution is obtained.

Quantum mechanical fluctuations are responsible for the triggering of the

superradiant pulse from the inverted population. It has been argued that when these

fluctuations are small, semiclassical solutions give good approximations to the superradiant

pulse emission and that these fluctuations are small at the maximum emission rate (Refs.
18, 34, and 35). The following sequence of figures was generated to check this

assumption. Figures 28a through 28d show in the top figures the emitted pulse which is

calculated from equations (8) and is given by

IN (m) (42)

The lower figure gives the variance

<<R 3 > >=<R>-<R 3 >2

= m2 p(m) _ < m p(m) >2 (43)
m m

Our results indicate that the quantum fluctuations are not necessarily negligible

during the course of the emission process. Figure 29 shows similar results for the initial

distribution P(5) = 1 and P(m) = 0, m = 5 and k1 = 0.0269. Here the variance is zero
initially, goes positive for a good part of the first pulse and then oscillates around zero.

The unphysical oscillations are due to the truncation error discussed earlier. However,

during the major part of the first pulse in the ringing emission process the variance is

positive. In the pure superradiant region (Fig. 30) the variance is positive and not

negligible during the major part of the pulse.
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Figure 29. Pulse and variance for the Initial conditions P(5) = 1, 5
P(m') = 0, m' = 5, N = 100 and k1 = 0.0269.
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Figure 30. Pulse and variance for the initial conditions P(5) = 1,
P(m') = 0, m' = 5, N = 100 and kj = 2.69.

In our final discussion we compare the results of quantum mechanical calculations

using the B-L model with semiclassical calculations using the pendulum equations

(programs SR 3 and SR 4, Appendix G). Figures 31a and 32a show quantum mechanical

results, and Figs. 31 and 32 the corresponding semiclassical results. In both cases, the

same parameters were used, but in 32 the Dicke state was initially specified as m = 2. Such

a precise specification is not possible in the semiclassical treatment.
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Figure 31. Quantum mechanical calculation (a) and semiclassical calculation (b)
for the case N = 2, kl = 0.03. In Fig. (b) it was assumed

P(m') = 0, m' 2, P(2) = 1.
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Figure 32. Quantum mechanical calculation (a) and semiclassical calculation (b)
for the case N = 2, k, = 0.3. In Fig. (b) it was assumed

Plm'1 = 0, m' = 2, P(2) = 1.•
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D. CONCLUSIONS

* The general equations of B-L describe the phenomena of superradiance in the

regime where stimulated emission interferes with cooperative emission as well as in the
pure superradiant regime. The theory has the capability of explaining certain features of the

experimental results with or without the occurrence of ringing. To explain correctly the
* experimentally observed pulse fluctuations, quantum initiation statistics have to be included

correctly and this is done in other theories. Also, the truncation introduced by B-L to make
the equations tractable produces unphysical results for some initial conditions. This can

appear as negative variance, negative pulses, or complete blow up of the solution. This
problem has to be dealt with to make the theory more generally useful. It would be

important to do this because the general theory includes inhomogeneous broadening effects
which are important in nuclear considerations. Also, calculations with the B-L theory

showed that quantum fluctuations are large and important over the complete pulse when
* stimulated emission is important. Thus, the usual justifications for the validity of

semiclassical theories breaks down.

In conclusion, we feel that for the study of certain features of nuclear superradiance
the B-L theory can be used to advantage, especially if the truncation error can be removed.
Effects of coherent excitation, relaxation, inhomogeneous and homogeneous broadening in
nuclear superradiance could be studied with the B-L theory. For taking into account
incoherent excitation, competing transitions, and transport effects, other theories based on
the Maxwell Bloch equations (Haake-Haus group effort and the Eindhoven group effort)
(Refs. 31, 32, and 36) should be considered.
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IV. MULTIPHOTON DEEXCITATION OF

ISOMERIC LEVELS

A. INTRODUCTION

Among the many concepts introduced over the years for developing a y-ray laser

(Refs. 1, 2, and 37) the upconversion or pumping of a nuclear level from an isomeric level

to achieve inversion is the one most vigorously pursued by researchers at present. The idea

is to pump the isomeric level by a short burst of electromagnetic radiation from a powerful

optical laser or x-ray source to a nearby short-lived level. This would provide the inverted

0 population if the decay rate of the upper lasing level is not too short. The lifetime of the

upper lasing level should be short enough to provide a large cross section for the stimulated

emission but not so short that it would introduce pumping problems with large power

requirements. In general, the upper lasing level may be populated through a cascade

process, thus reducing the requirements on the lifetime of the lasing level.

For the purpose of analysis, the operation of a y-ray laser can be conveniently

divided into three steps as discussed in Ref. 2. The first step is the initial pumping or

inversion stage, which involves the preparation of the isomer. The second step is the

triggering of the lasing action. In the case of interest, this is the pumping or the

upconversion to the upper lasing level by a low-energy photon. The third step is the

emission of the radiation in a lasing or superradiant mode. All three stages present their

special problems as discussed in Ref. 2. In particular, the emission stage requires the

operation of the Mcssbauer Effect (ME). This effect could be destroyed by heating or the

destruction of the isomeric crystal during the triggering stage by inefficient upconversion

mechanisms. In general, threshold conditions, depending on solid state and nuclear

properties, have to be satisfied (Refs. 38, 39, and 40).

In this paper, we are only concerned with the triggering stage in the upconversion

concepts as shown in Fig. 33. During this stage, the population of the upper level with

high fluxes of low-energy photons has to be accomplished.

The processes referred to as "coherent and incoherent upconversions" have been

discussed by Collins (Ref. 41). We are nterested in the requirements imposed by nuclear

75



properties on the realization of those processes. Furthermore, one of the critical proofs of
concept experiments on the way to the development of a y-ray laser, based on upconversion

techniques would be the demonstration that the energy stored in an isomeric level can be
"pumped out," or the decay rate of the level increased. A Raman scattering experiment
(Ref. 42) has already been proposed to do just that. The feasibility of this would have to
be shown before lasing on the nuclear level with upconversion techniques (a much more

difficult problem) is seriously considered.

We have divided this Chapter into two parts. First, we examine the single-photon

Raman scattering experiment and compare requirements set by atomic and nuclear systems.
Second, we discuss multiphoton processes and examine the requirements for pumping out
isomeric levels and preparing an inverted population for lasing.

UPPER
LASING Jc>
LEVEL

LASERE

ISOMERIC
STORAGE 12> -S
LEVEL

Eab =10-l100koV

0

LOWER
LASING Ib> o
LEVEL (
14407-3A

Figure 33. A three-state system showing the isomeric level, or initial state la:.,
the upper lasing level Ic. and the ground state lb.. In the subsequent

analysis we keep Eba and Ya constant and vary Eca, (o, n,,, I, and Y'c.
Process 1 in the figure shows a single photon off-resonance excitation,

process 2 a multiphoton on-resonance excitation, and
process 3 a multiphoton off-resonanca excitation.
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B. COMPARISON OF ATOMIC AND NUCLEAR ELECTROMAGNETIC
TRANSITIONS

At this point, a brief discussion of general trends in atomic and nuclear transitions
would be appropriate. Particular optical lasing and potential gamma-ray lasing transitions

are best contrasted against such a background discussion. Features of atomic and nuclear

transitions are very different, with major differences arising both from kinematics and

structure. Three of the four aspects to be considered (multipolarity, frequency, lifetime,
and single-particle structure) involve primarily kinematics. A dimensionless figure of merit
with which to relate these features, and contrast the atomic with the nuclear case, is kr, the
photon wave number (k = 27r/) multiplied by the system radius.

Atomic transitions are almost exclusively electric dipole transitions with frequencies
in or near the visible range, and lifetimes longer than a nanosecond. They arise from single
electron level jumps. For a 1-eV transition X = 12,000 A, and kr is about 3 x 10- 4. The

radiative decay width for electric decays is given by an atomic matrix element, multiplied by
(kr)2 1+ 1. If the interaction potential is e2/r evaluated at an effective distance of about an

angstrom, this leads to a width of 5 x 10-10 eV, or a lifetime of about a microsecond (see
Table 6). Electric quadrupole radiation would be inhibited by an additional factor of (kr)2,
or about 10-7. Magnetic dipole radiation would be inhibited by a factor of (hc/mec 2 ao), or

about 5 x 10-5 (ao is the Bohr radius of the Hydrogen atom).

Table 6. Atomic and Nuclear Decay Rates

Name of
Parameter Atomic Nuclear

E-Gamma (eV) 1 2 4 100,000 300,000 1,000,000

k-Gamma(1/A) 0.000507 0.001014 0.002027 50.67653 152.0296 506.7653

X(A) 12398.61 6199.305 3099.652 0.123986 0.041329 0.012399
(kao) 0.000268 0.000536 0.001072 0.002681 0.008042 0.026808

Width (eV) 5.25E-10 4.2E-09 3.36E-08 0.005246 0.141634 5.245713

El Rate(s)- 1  797503.7 6380029 51040234 7.89E+12 2.15E+14 7.98E+15

M1 Rate(s)- 1  42.49773 oo9.9819 2719.855 1.26E+10 3.41E+10 1.26E+13

E2 Rate(s) -1  0.057314 1.834036 58.68914 57313614 1.39E+10 5.73E 12

E2Rate*Z*Z(s) - 1  0.057314 1.834036 58.68914 1.43E+11 3.48E+13 1.43E+16
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The dominance of electric dipole, or E 1 radiation, and the approximate lifetime are
set by the available energy of an electronic transition together with the radius of an atom.
Electric quadrupole radiation is much weaker because (kr) is so small. Since major shells

in atoms contain a series of adjacent 1-values, many electric dipole transitions exist.

For a nuclear transition, with a characteristic energy of 1 MeV and a characteristic
radius of 5.29 fm (= 10- 4 ao), we have (kr) two orders of magnitude larger than in the

atomic case. Using the same, somewhat naive, procedure to estimate a nuclear E 1 lifetime

gives a width of 5 eV, or a lifetime of about 10-16 s. Electric quadrupole radiation would

be only three orders of magnitude slower, and have lifetimes much shorter than those of the

fastest atomic electric dipole transitions. From energy and size considerations alone we 0
expect that nuclear transitions will be faster than atomic, and will have higher
multipolarities which are more competitive with dipole radiation. (See Table 6.) It is
important to recall that candidate gamma-ray lasing transitions must compete with all

available channels. The 10 to 100 keV energy range for the lasing transition does not set 0
the energy scale if other decays with higher energy gamma rays are allowed, as is the case

for most candidates. The lower energy desired for the lasing transition only imposes
further kinematic difficulties.

Further differences arise from the dissimilarities in structure of atoms and nuclei.

In atoms, charge separation involves moving a light electron relative to the center of mass
of the atom and is fairly simple. In nuclei, charge separation involves moving the much
heavier protons relative to the neutrons to which they are bound by the strong interaction.

As a result, most El strength corresponds to an unobservable motion of the center of mass
of * e system, and cannot contribute to decay rates. The exception to this is in isospin

changing excitations, which involve spatial separation of neutrons and protons, and hence
tend to occur at high excitation energy. This results in El rates which are orders of

magnitude slower than single-particle estimates. 1

In contrast, E2 transitions are enhanced by collective participation of many nucleons

in a single transition. Frequently, an E2 (or Ml) branch will dominate decay of a nuclear
level even though it has an allowed El transition to another final state. Furthermore, since

the major shells in nuclei are frequently comprised of single-particle states of the same

parity, many states have no angular momentum allowed El decay. The distinction between

El (allowed) and other (forbidden) transitions, so useful in atomic physics, completely

breaks down in nuclei. The assumption that there could be a nearby state connected to an
isomer by an E l operator which itself decayed rapidly is almost surely incorrect.
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These differences have implications for the nature of multiphoton excitation in the

atomic and nuclear cases. In the atomic case, it is easy to find a state which has a large El

matrix element with a given isomeric state. Pumping can proceed by Rabi oscillations

between the two states. In the nuclear case this is very unlikely--most states do not have

any nearby state to which they are connected with an appreciable El matrix element.

Furthermore, because of the high (kr) values associated with nuclear transitions, isomeric

transitions tend to require much higher multipolarity than E2, and hence have very large

total angular momentum. States with rapid decay would have much smaller values, and

could not be reached via a single El transition.

* However, multiphoton upconversion need not proceed only by Rabi flopping

between two states; since the process is to proceed by many photons, the angular

momentum could be changed by one unit on each of many steps. Furthermore, it might be

possible to engineer a mixed process, whereby initially the isomeric state would undergo

0 Rabi oscillations with a more distant resonance with which it is connected. This would be

followed by a few steps in which the angular momentum was lowered appreciably, to the

final lasing state which could also oscillate with another distant resonance state for a few

steps. This would lead both to larger matrix elements and larger energy denominators, and

it is an oixen question at this point whether this would help or hurt; however, the large

matrix elements-would help at every step, whereas the large energy denominators would

only hurt at every other step. This possibility should be examined critically and in detail.

In summary, the following things seem to be clear:

0 1. Nuclear structure is such that a state with a direct dipole connection to an
isomeric level is very unlikely to be a suitable lasing or feeder state.

2. Many nuclear states have no identifiable nearby state with which they connect
via a dipole operator. This will eliminate many of the isomeric transitions

ID under consideration.

3. Use of distant resonances for upconversion should be considered.

We turn now to a discussion of off-resonance photon excitation of nuclei.

One of the proposals for making a gamma-ray laser involves pumping a metastable

excited state up to a higher, short-lived lasing state which would then decay to the ground

state or some other lower energy state. Because of the relatively low level densities in

nuclei, compared with the energies of available intense sources, it is necessary to
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understand the off-resonance or virtual excitation of these lasing states. This off-resonance

excitation in the nuclear context was first proposed by Arad, Eliezer and Paiss (Ref. 30).

They estimated the cross section using the Breit-Wigner formula:

X2 re Fi 2
27 [(-E) + (rt /2)2]

where X is the particle wavelength, the r's are the elastic, inelastic, and total widths, and E

and Eo are the energies of the particle and the resonance.

This expression is derived for particles with energy near the excitation energy,

(E-Eo)/Eo<<I. Usually, when one refers to far off-resonance processes, one means

Ft <<(E-Eo), and for these off-resonance processes the Breit-Wigner formula is accurate,

again provided that (E-Eo)/Eo<<l. However, for very-low-energy particles, in the limit
E/ Eo<<1, it is necessary to include the energy dependence of the width Fe. This results in

a finite elastic scattering cross section and an inelastic cross section with a singularity which

is only linear in the wavelength X.

For low-energy photon scattering, a similar situation arises. Following the

treatment in Sakurai (Ref. 43), but neglecting a small contribution due to emission
preceding absorption leads to a multiplication of the naive Breit-Wigner result by the ratio

of the on-resonance wavelength, Xc,, to the reF,' photon wavelength, X:

r2 2 (Ea+E)
2 [E_Eo)2 + (F t /2) 2 ] E ab

Before presenting detailed results, some comments on these infinite cross sections

are in order. First, there is nothing necessarily unphysical in an infinite cross section--it is

the count rate that must be finite. In the particle case, the count rate remains finite because

it is the cross section multiplied by the velocity. In the case of photon-induced El

excitations, the long wavelength singularity is eliminated by the polarizability of the atom,

which decreases the field strength "at the nucleus by the ratio of the nuclear size to the

wavelength squared. (See the discussion by Brueckner, elsewhere in this report.)

For photons driving transitions of other than electric dipole character, a more

careful treatment of the count rate is necessary, since for fixed number densi', the flux

does not decrease with the energy of the photons. The count rate, I, is given by

I = Ns Y nyc /V,
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where Ns is the number of scatterers, a is the cross section, ny is the number of photons, c

is the speed of light, and V is the volume. Once the wavelength of the light is as long as a

characteristic dimension of the target, the volume must increase as the wavelength cubed.

The total power required therefore increases as the wavelength squared, and the ratio of

count rate to input power actually tends to zero as one over the wavelength. Despite the

infinite cross section, the result is physically reasonable.

These corrections having to do with the size of the target are only of interest by

virtue of showing that the infinite cross sections are not a problem per se. Numerically,

getting the correct behavior is crucial. Incorrect treatment of the frequency dependence at

the threshold has led to published estimates that are off by several orders of magnitude.

We shall now compare relative cross sections with and without the threshold factors

for three cases of interest. These are the original isomeric case proposed by Arad, Eliezer

and Paiss, a pair of "generic" nuclear cases, and finally, a case from atomic physics in

which the upconversion was observed. In all cases, the cross sections are normalized to 1

at the resonance.

In Fig. 34, the naive Breit-Wigner and correct low-energy cross sections are

compared for the transition studied by Arad, Eliezer, and Paiss. Only the energy regime

around 1 eV, the energy they proposed, is shown. For these energies, neglecting the

frequency dependence introduces an error of about 6 orders of magnitude.

In Fig. 35, relative cross sections are presented for photons in the energy range 0. 1

to 10,000 eV, exciting resonances at 1000 and 10,000 eV. Again, we find that neglecting

the threshold factor leads to severe errors. From these calculations it would appear that far

off resonance triggering of a gamma-ray laser will be impossible.

Despite these difficulties, "upconversion" or "lifetime shortening" has been

observed in atomic physics. Cooper and Ringler (Ref. 44) have observed decays from a

forbidden two-quantum transition in He, by applying microwave radiation to virtually

excite a nearby state with an allowed two-quantum decay to the ground state. In their case

however, the photon energy was about one third the transition energy. This leads to a

substantial threshold effect, but not so drastic as to make the induced decay unobservable.

Our calculated relative cross sections are shown in Fig. 36. The microwave energy for

their experiment is indicated with an arrow. Since their experiment relied on relative cross

sections, their results do not directly test the details of the threshold dependence.
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In addition to the absorption-emission process, their experiment observed the stimulated-
emission process. Theoretically, if one were many widths from resonance, (Eo-E) >> ,
but still close to the resonance in the sense that (Eo-E) /(Eo) <<1, these processes would be

of comparable magnitude. This in fact was the case. Since these are the conditions under
which single photon upconversion of a gamma-ray laser occurs, these processes should be

included in future investigations.
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Figure 36. The effect of the correct threshold behavior on the atomic physics
experiment of Cooper and Ringler, with their photon energy indicated by the

arrow. Because their photon energy was an appreciable fraction of the
resonance energy, the threshold effect was not fatal to their experiment.

In summary, we conclude:

1. It is essential to use the correct threshold behavior when using the Breit-
Wigner formula to estimate upconversion cross sections.

2. This factor greatly reduces the probabilities for single-photon upconversion.
3. Given a material with an excitation energy from a metastable state to a lasing

state, only a few times the energy of available light sources, single-photon
upconversion might be possible. In that case, absorption-emission and
stimulated-emission-emission would be of comparable strength, leading to two
gamma-ray lines with energies differing by twice the incident photon energy.
The existence of this second line has been overlooked in previous discussions
of the gamma-ray laser.
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C. MULTIPHOTON EFFECTS ON ATOMIC AND NUCLEAR SYSTEMS

Most work in experimental atomic and nuclear physics has been done under
conditions where single-photon processes are predominant. Thus, for purposes of
theoretical evaluation one calculates a cross section, assuming the interaction between a
nuclear or atomic system and a single photon of the electromagnetic field. Such a cross

section would be independent of the field intensity and the only effect or the interaction
would be to induce a transition between well-established nuclear or atomic states. In

stronger fields, the electromagnetic interaction modifies the nuclear level structure so that
the dynamics is best described by a combined nuclear photon field Hamiltonian (Ref. 45).
Under such conditions the transition matrix element between states or the absorption cross
section would be a function of the intensity of the field. One effect of this nonlinear
interaction is the A.C. Stark shift observed in atomic systems (Ref. 46). The
electromagnetic field of the photons modifies the level structure so that frequency changes
in the resonance of the cross sections as a function of the field intensity can be observed.
As far as we know, no effects have been observed on nuclear structure; however, there is
great interest in observing such effects both for their intrinsic worth and for possible

application to the development of gamma-ray lasers (Ref. 1).

In this section we describe our parametric study of the possibilities for the
observation of multiphoton processes on the nuclear level and their application to the
development of a gamma-ray laser.

For the investigation of multiphoton processes we have selected a three-level
system was shown in Fig. 33. States 1a> and Ic> are excited states with decay rates

Yc >> Ya and b> is the ground state. It is assumed that initially state 1a> is populated. The
purpose of the photon field, with ho _< Ec - Ea is to excite the higher and faster decaying
level 1c> so that an inversion is produced between b and c and at the same time a high

stimulation cross section is obtained for the transition c to b. An experimental depopulation
of state 1a> with an electromagnetic field would be considered a major proof-of-concept

achievement on the way to the development for gamma-ray laser.* We have therefore
looked at length at the conditions under which such an experiment could be successful.
Our calculations were performed for atomic and nuclear systems in parallel because
multiphoton processes have already been observed in atomic systems and for this reason it

Rapid pumping out of an isomer would also be intrinsically interesting, and would likely have practical
applications even if genuine lasing of the decay were unattainable.
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is often assumed that they can be observed in nuclei. However, nuclear radii are five

orders of magnitude smaller than atomic radii. Thus, for photons with similar wavelengths

the interaction would be drastically reduced. Furthermore, nuclear dipole transitions are

often inhibited by nuclear structure effects, as discussed in detail in Section B. Constraints
imposed by nuclear structure continue to be important at every step of a multiphoton

process.

Our investigation of multiphoton interactions with atoms or nuclei was based on the

semiclassical formalism described in Appendices H and I. Since calculations using dressed

state (Ref. 44) theory have been reported in the literature (Refs. 47 and 48) we show the

*0 equivalence of semiclassical and dressed state approaches to the treatment of the interaction

of electromagnetic radiation with atomic and nuclear systems in Appendix H. In

Appendix I the actual dynamic equations for the density matrix in the rotating wave

approximation are derived from

0h -- =-i [H. + V, p]+Fp , (44)

where Ho is the noninteractive part of the Hamiltonian, V is the interaction Hamiltonian and

F is the decay matrix which is a function of Ya and yc. (There are two simplifying

assumptions made in these calculations. First, the near-resonance response was assumed.

The corrections analogous to those presented above for single-photon processes have not

been incorporated. Second, the rotating wave approximation is used. Both these

approximations are valid near resonance. We believe that the trends revealed in this

parametric study will hold up after these approximations are removed.) The three-state

system shown in Fig. 33 is used to model the nuclear or atomic system. Application of

equation 1 to this model gives 10 complex (or 16 independent real) equations for the

*1 diagonal and off-diagonal matrix elements of the density matrix p. Of special interest are

Pbb and Pcc which give the population of the ground state Ib> and the excited state or upper

lasing level 6c>.

The transition matrix elements have to be calculated according to the multipolarity of
the allowed transition (El, E2, Ml, etc.) and the number of photons participating in the

process. For E 1 single-photon transitions, the interaction Hamiltonian is

*0 V -;. F2IIni (a + a') -h 2n-t (a' + a+) (45)
Vn V n
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where g is the dipole moment, o the frequency of the incoming photon, co' the frequency

of the outgoing photon and Vn the normalization volume. The matrix element is calculated

from
Vif =<i IV If> (46)

For the transition from level a to level c, where a photon of energy hCo is absorbed by

level c,

Vac =< a;n,O IVlc;n-1,O>

9a 1V C 2a

q aI
- 7c (x VI

rac / t - (47)

where gac is the dipole moment matrix element, rac is the effective atomic or nuclear radius

between states a and c, ao is the fime structure constant and I is the photon beam intensity

in units of W/cm2 . States Ia> = 1a; n, 0> and Ic2> = Ic; n - 1, 0> are defined in

Appendix I.

In terms of single photon matrix elements, the matrix element in question can be

calculated according to perturbation theory from:

1( <a I Vll><IVl2>-..<m-1IVI c 2 >ar,2 1(WOa-0) + (o) 1 (coa+ 20- co2) ... t ((Oa + (m-1)C0 - COm-I)

States I1>, 12> through Ir-l> are the intermediate states obtained by excitation of real

states of resonance. In our case, in the three-level system they would involve Ia> and c>

only. This is a simplifying assumption which we expect to have no effect on the observed

trends of the calculations. For the interpretation of an experiment at high intensities the

contribution to the time variation of the populations Pa, Pb, and Pc for the initial

intermediate and ground states of all the single and multiphoton processes have to be
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considered. The tails of many levels far from the isomers could make important

contributions to the MIP multiphoton transitions matrix elements.

We were interested in a parametric investigation to determine the effect on the

populations of levels a, b, and c of various parameters such as the intensity I, the parameter

A = Ea - Ec - (o or the off-resonance effect, the photon number m, the strength of the

0 interaction rac (the effective nuclear or electronic dipole radius) and the pulse length of the

photon beam At.

In the next section we give some results for the three-state system shown in Fig. 33

for:
9 (a) rac = 0.5 10-8 cm (typical atomic radius)

(b) rac = 5 10-13 cm x 0.1 (typical nuclear radius times a minimal hindrance
factor)

* Finally, for a realistic case we considered the time dependence of the population of

level Ic>, since a large population inversion, in addition to depumping, will be required for

a genuine laser.

Before presenting the detailed calculations we want to stress a major qualitative

result; atomic dipole moments are five orders of magnitude larger than their nuclear

counterparts. For fixed count rate, a 105 decrease in matrix element will require a 1010

increase in beam intensity. While attending to the detailed results of the parametric study,

one should not lose sight of the enormously increased difficulty in working with a nuclear

system.

The discussion of single-photon excitation focused on the Breit-Wigner expression

for resonant cross sections. In the multiphoton case we will frequently present plots of the

population of the ground state Ib>, Pb. For all the cases under discussion, intensities, I,

are quoted, assuming a characteristic atomic system with a dipole moment of about 1A; the

given values of Pb for a nuclear system would be obtained with intensities some 10 orders

of magnitude larger. Unless otherwise noted, the population probabilities are given for the

end of a 5 ns burst. The lifetime of state Ic> was 1 ns, so the pumping out should be

completed. The lifetime of state [a> was taken to be 107 s.

In Fig. 37, multiphoton population of the ground state, Pb, for nO = 9 is plotted as

a function of the detuning, or the distance off resonance for several photon intensities. For

the lowest intensity plotted, 5 x 1013 W/cm 2, we find the peak population to be around

30 percent, and to fall two orders of magnitude as the energy moves 10 widths off
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resonance, in keeping with the single-photon results. Increasing the intensity by a factor of

two leads to a maximum final population, Pb, of 1.0, and a very slow decrease compared

with the single-photon prediction--the width has been effectively broadened by around a

factor of 10. Further increases in the intensity lead to a further increase in the effective

width. If in the nuclear depopulation case, one is intensity limited, it will be very important

to have minimal detuning.

/1S l'4

10

0 10-T

DETUNINO PARAMETER a IN UNMI OF Y.

Figure 37. Multiphoton pumping of the isomeric level as a function of the
detuning parameter in units of yc. The ordinate is the population of the

ground level b. These results are for typical atomic transitions.
For typical nuclear transitions the power requirements

would have to be increased by a factor of 1010.

The population probability is presented as a function of photon number for both

off-resonance and on-resonance energies, again for several intensities. In the off- •

resonance case (Fig. 38), Wca = 100 eV, and (o = 10 eV. For electric dipole transitions,

parity requires an odd number of photons to be absorbed, hence there is no photon number

which is on-resonance. We find that for high enough intensities the ground state is nearly

fully populated with a single photon, and the multiphoton process would fully populate the 0

ground state. As the intensity decreases, the single-photon population begins to fall first,

but the multiphoton ultimately falls much faster, as expected.

In Fig. 39, the same calculations are repeated, except the excited state energy, oca,

has been changed to 90 eV, allowing on-resonance excitation of level 6c> with a 9-photon

process. The results are quite similar to (oca = 100 eV, except for the 9-photon, on-

resonance case (Fig. 39) when the population of state Ib> saturates even for the lowest

intensities. 0
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Figure 38. Multiphoton pumping of the isomeric level Iap. The abscissa gives
the number of photons used In the process and the ordinate the population

of the ground level lb: when (oca = 100 eV and (o = 10 eV. Since an
odd number of photons Is required for excitation,

this process cannot be on-resonance.

Figures 40 and 41 illustrate ground state population as a function of field intensity.

In Fig. 40 this is shown for off-resonance, 9-photon excitation of a 100-eV state with

10 eV photons. The probability increases like the intensity to the 9th power until it reaches

about 10 percent at about 2 x 1015 W/cm2 , at which point the saturation effects level out the

curve. For the single-photon, on-resonance excitation in Fig 41, there are two significant

differences. First, the saturation occurs at a much lower intensity; only about 100 W/cm 2 .

Second, the fall-off with intensity is only linear, and hence is much more gradual.

Single-photon, off-resonance depopulation of the isomeric level as a function of

photon energy and field intensity is shown in Figs. 42 and 43. For low intensities,

population of jb> is proportional to the intensity for all photon energies. For high field

strengths, or energies close to the resonance, saturation is again clearly visible.
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Figure 43. Single-photon depopulaton of Isomeric level Ia as a function of
photon field Intensity, I, for various photon energies with 11o)ca = 100 eV.

While it will probably be important to use on-resonance excitation to get a workable

gamma-ray laser, there are certain subtleties worth noting about the off-resonance region.

These have to do with the fact that for fixed intensity there is a higher density of low-

energy photons than there would be for high-energy photons. Furthermore, once you are

very far from resonance it is possible to benefit from the factor of 1/(0 from density of

states. Figure 44 shows the- probability of populating the ground state as a function of

number of photons for several values of the intensity, when exciting a 100-eV resonance

with 1-eV photons. Compared to the similar curve for 10-eV photons in Fig. 38, we find

the 1-eV case much more favorable. For ir'tensities of 5 x 1015 W/cm 2 or higher, the

population is saturated. For the single-photon case, the results are essentially the same,

since the energy denominators are nearly equal. For all other cases, the lower energy and

concommitant higher photon density are an advantage, especially for the cases with large

photon numbers.
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Figure 44. off-resonance depopulation of the isomeric level

as a function of photon number nmo for 1 eV photons.

Figure 45 presents a parametric study of the effects of both detuning and photon

number on final ground state population. 'Me more rapid fall of population with intensity

when more photons are involved is clearly seen in this figure. The effects of detuning are

smaller for the multi-photon cases. Since increased intensity both broadens the resonance

and favors multi-photon processes, the penalty for either decreases.

The ground state population responds very differently to changes in decay rate,

depending on whether the process is on- or off-resonance. This can be deduced from the

Breit-Wign.r line shape, which on resonance varies as the reciprocal of ri, but off-

resonance increases linearly in ri. The off-resonance case is studied in Fig. 46, where the

increase in population with increasing decay rate is clearly illustrated.
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Figure 45. Off-resonance depopulation of isomeric level Ia>, as a function
of photon field Intensity for different detuning parameters and

number of photons participating in the process

The final two figures are specifically oriented to triggering nuclear gamma rays. At

present there are no overwhelmingly attractive candidates, so as an illustration we have

taken parameters from Hf 179, and modified some of the structure to make it a better case.

There is a 25/2- isomer in Hf 179 with a 7/2+ excited state only 200 eV above it. We have

assumed they can be connected by dipole radiation with a matrix element as large as is

found in that region of the periodic chart. In other words this "mock-hafnium" calculation

is a drastic overestimate for that nucleus, but it is not inconceivable that such a favorable

case would be found somewhere. We estimated the decay rate of state Ic> from the

Weisskopf formula for an M1 transition with a factor of 100 inhibition, giving a rate of

Yc = 4.3 x 1011/s.

For single-photon, off-resonance processes to populate this state appreciably would

require an intensity of 1024 W/cm2 (see Fig. 47). For a faster decay rate, complete

depopulation of the isomer could be achieved. For on-resonance excitation using 200 eV

photons, intensities of 1014 W/cm 2 would suffice for depopulation, unless the rate were

too fast. As mentioned above and illustrated in the figure for the on-resonance case, too

fast a decay rate, yc, diminishes the out pumping.
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Finally, we would like to remind the reader that the ability to pump out the isomer is

not sufficient for the development of a gamma-ray laser. What is actually desired is a

population inversion. To achieve this with the rapidly decaying nuclear states will require 0

very short, intense bursts. A sample of what one might expect in terms of population as a

function of time for the three states in our mock-hafnium case is shown in Fig. 48. One

desires not merely to increase Pb, but rather to achieve at some known time a population

inversion where most of the nuclei are in state Ic>, as shown at t = 0.5 ps. Identifying the •

genuine candidates, collecting the data necessary for more realistic calculations, and

performing those calculations are the next tasks to be performed.
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Figure 48. Level populations for the three-state system as a function
of the pulse length of the exciting photon beam
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D. CONCLUSIONS

Most plans for a gamma-ray laser can be divided into three stages: (1) preparation

of an isomer or storage state; (2) upconversion to a lasing or intermediate state; and

(3) extraction of the energy. This paper has focused exclusively on the upconversion

process.

So much experience and expertise derives from lasing in atomic physics that it is

important to note the differences in nuclear and atomic systems. The essential difference is

the much smaller nuclear size, leading to matrix elements five orders of magnitude smaller

than their atomic counterparts. This results in cross sections ten orders of magnitude

smaller. An essential step in the development of the gamma-ray laser will be to tind
materials and procedures to overcome this disadvantage.

There are a number of specific results obtained in our investigations. First, we

have derived the correct expressions for the off-resonance cross sections and power

requirements for single photon excitations. Previously used expressions have

overestimated the cross sections and underestimated power requirements by as much as six

orders of magnitude.

A parametric study of multiphoton upconversion was completed, relying on some

simplifying assumptions for the calculations far from resonance. These calculations were

carried out for both atomic and "mock-nuclear" systems. The results underscore the

difficulty of working with nuclear systems due to the 10 orders of magnitude greater power

requirements, and point to the need for detailed evaluation of candidate isomers revealed by

computer searches.

We are now positioned for calculation of on- and off- resonance, single- and

multiphoton upconversion using the most realistic nuclear structure information available.
• We hope to begin the code development and isomer evaluation in the coming year.
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V. AN INVESTIGATION INTO SOME PROBLEMS IN
THE DEVELOPMENT OF GAMMA-RAY LASERS:

ATOMIC SHIELDING OF NUCLEI AND

UPCONVERSION BY MASSIVE PARTICLES

A. INTRODUCTION

In this paper several basic physics questions associated with making a gamma-ray

laser are discussed. These include constraints on proximity of other states, pumping

requirements and shielding, and the use of particles with mass to drive upconversion.

B. ISOMER DECAY

Consider an isomer with lifetime of 107 s (115 days) which decays by an E5

transition. The transition rates for electric and magnetic multipoles for a nuclear dimension
of 10-12 cm (Refs. 49 and 50) are given in Fig. 49. The excitation energy for a decay rate
of 10-7/s and an E5 transition is 390 keV. This state could decay by other transitions if

lower-lying levels were accessible. The distance below the isomer level at which a level

could lie, without appreciably affecting the isomer lifetime (50 percent branching) is at

most:

Transition A

El 3 x 10- 2 eV
M1 0.2 eV

E2 0.2 keV
M2 0.5 keV

E3 9 keV
M3 20 keV

E4 90 keV

M4 170 keV

The existence of the isomer therefore is a severe constraint on the lower-lying levels.
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Figure 49. Transition rates for electric and magnetic multipoles for a
nuclear dimension of 10- 1 2 cm

C. PUMPING TRANSITION

Many gamma-ray laser proposals consider the excitation of a level of a few electron

volts above the isomer level, which is the upper level of a lasing transition or which decays

to an upper lasing level. For the example in Section B, an El transition could be produced

by radiation absorption. If this level decayed directly to the ground state by an E4

transition, the lifetime would be several seconds. If the decay were by an El transition to

an upper lasing level, this level would be reached by an E2 transition from the isomer and

therefore would lie less than 0.2 keV below the isomer, For a spacing of 0.2 keV, the

pump level would decay by El transition with a lifetime of about 10 gs. The lasing level

would decay by an E3 transition, with an energy of nearly 390 keV, with a lifetime of

50 jis. This possible level sequence therefore is suitable for a gamma-ray laser.
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If the upper pump level were reached by an M1 transition and decayed to an upper

lasing level by an El transition, the lasing level could be reached by an M2 transition from

the isomer and would lie less than 0.5 keV below the isomer level. The decay time from

the pump level to the upper laser level, for a spacing of 0.5 keV, would be about a

microsecond and the M3 decay of the lasing level a lifetime of about 30 its; again, possible

for a gamma-ray laser.

D. PUMPING REQUIREMENTS

The field at the nucleus required to excite the upper pump level can be estimated

from the requirement that the excitation rate R (pump) exceed the decay rate R (laser) of the

upper lasing level. This condition for an El transition is

R (pump) -- <eEr> 2  1 > R (laser) (48)
rpump

The pump width is "pump -- tR (decay) giving the necessary pumping flux (at the nucleus)*

cE 2  ~ R (laser) R (decay) . (49)
4n 8- c e 2 < r 2 >

For a lifetime of the lasing level of 50 pts and of the pump level of 10 pts, the required flux

at the nucleus is 0.33 W/cm2 . The electric field at the nucleus is 0.10 esu or 30 V/cm.

To produce this field at the nucleus, a much larger external field must be applied.

An external electric field is screened by the polarization of the atomic electrons.** A

theorem due to L.I. Schiff (Ref. 51) proves that a uniform electric field is exactly cancelled

at the nucleus by an atomic electron polarization. A similar effect in the electronic excitation

of heavy atoms is analyzed by Wendin et al. (Ref. 52). This is easily seen to be required

* by the absence of acceleration of a neutral atom by a uniform electric field A spatially

varying field at the nucleus therefore is reduced relative to the external field by a factor of

the order of (atomic dimensions/wavelength) as discussed in Ref. 50. For a Fermi-Thomas

atom this factor is of the order of 10- 7 AE(eV) 2z-2/3 . This is a major correction to the laser

* This is the energy flux required by excitation of a single nucleus, in an on-resonance absorption of
visible light. Excitation of an appreciable percentage of the nuclei in a solid sample w-u!d be many

0 orders of magnitude higher.
*" The screening effect of electrons was pointed out to the author by C.K. Rhodes.
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flux requirement and must be carefully evaluated. The effect is probably small only if the

radiation wavelength is smaller than atomic dimensions.

The screening effect is much less important for an M1 transition, the polarization of
atomic electron spins having little effect on an external magnetic field. The flux required is

the order of

E2  1 h2 c R (laser) R (deca5) 0)
N  c

where

gN = nucleon gyromagnetic ratio 0

= nucleon Compton wavelength.

This is increased relative to the example of the El transition by a factor of

RN  2
( Nc) 2--- 625, (51)

giving an incident flux of the order of 20 W/cm2 .

E. SEARCH FOR CANDIDATE ISOMERS

An isomer with a level only a few electronvolts above the isomer level could have

decay excited by interaction of the level with the atomic electrons, by internal crystalline

fields, by close collisions in a high-temperature gas, or by bombardment with ions at

energies too low to cause direct excitation by nuclear collision's. For example, isomers in a

thin foil bombarded by a relatively low-energy ion or electron beam might show an increase

in decay rate. This could be the easiest procedure for a search for isomers possibly suitable

for a gamma-ray laser. 0

1. Isomer Excitation in Collisions

An isomer bombarded by ions with energy too low to produce a nuclear collision

can be excited by the coulomb field of the ions. The perturbing potential due to the

transverse component of the field is
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V =erN E

= 22 rNP e , (52)

(p2 + v t)

with rs the screening radius of the bound electron and P the impact parameter (closest
approach). The excitation probability for the isomer level with Ae =ico is

P (excite) 2 (53)

0 with

S .,.-d -r. eior
Vm= ze2rn P e dt

* + t2)3 2

_ 2ze2 n P exp (-COP) e (54)
P2 v

This gives an excitation cross section of the order of

Saex= 2X0p J V(d 1 2

2e 8 7rrN 3 *dp (2.) e-P/s

0
f 2x M

8n 2 r2 lo mx(55)
-TV- "r  e pmin

This result can also be derived from time-independent perturbation theory, treating the

interaction with the ion by perturbation theory. The result, ignoring screening, is

dIv 2 ' J 2 kM 2 d 2' (56)
(2 i)3k

with

V rJ (f I 7A 2 M 10
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47ce 2 Z _ (r') (r ') i -rl
- 4&zJj ~~~ e dr'2' ex iso d
q

47re2 z -

q2 iqrN (57)

with

-q

r f V*ex (r r' i.so (r d' (58)

This gives, averaging over the orientation of rN,
-- (- 2)12 r l oge k-+k'l(9

This is the same as equation 55 if the logarithmic factor is interpreted to be the ratio of the

interaction ranges.

In equations (54) and (57), the cutoff ranges are of the order of

Pmax O1 lesser of
r s

P rain -- is om er e2  (0(60)

-ion

These estimates of pmas and Pnin are valid only if Pmin is greater than the nuclear radius.

For bombarding protons and a screening length equal to the Fermi-Thomas length

a0ziso "1/3, proton energy above which pmas = rs is

(eV) -36.6 Ae2 (eV) (61)
proton Z4/3

iso

The electron screening therefore is usually dominant. The minimum distance Cknin is
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Pmiin = Zisomer e

Zisomer -7 (62)
-e 1.14 x10 (28 eV

This is greater than the nuclear radius for zisoma = 64, for proton energy less than 12 MeV.

Thus, for protons with energy of a few mega electronvolts, a screening length rs of

10- 9 cm, a nuclear radius of 5 x 10-13 cm, the cross section for excitation is roughly

4 x 10-27 cm2 . This depends only weakly on the excitation energy hCO, as long as Co is less

than v/rs.

As an example, we consider isomers embedded in a foil with thickness much less

than the proton range. The excitation rate for a proton flux 4 is

rate (ex) = (ex 4 nisomr, (63)

which will exceed the spontaneous decay rate if

oex 0 > rate (decay), (64)

giving a particle current of 5 MeV protons of

j > 4 x 107 rate (decay) A s/cr 2  (65)

Thus, for a lifetime of 107 s, a current of 4 A/cm2 will roughly double the net decay rate.

A current of 1 mA/cm 2 would give an increase of the order of a percent in the decay rate,

which is easily detectable. The excitation probability depends, however, only weakly on

the excitation energy hco, making it difficult to determine the energy from measurement of

the y-rays.

2. Isomer Decay Induced by Atomic Electrons

An isomer can decay by coupling to the internal conversion resulting from atomic

electrons, with the transition energy carried off by the electron. The internal conversion is

often large, showing the strong perturbation of the electromagnetic transition by the

electrons. A related process can also occur if a nuclear level lies just above the isomer,

from which a transition to an intermediate state can be produced by the electron coupling.

We assume,

TP0 = isomer level; high angular momentum relative to ground state;

TF2 = final nuclear ground state;
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Tn = intermediate nuclear state, angular momentum one relative to isomer;

00 = initial electronic state

01 = final electron state with AL = 1 from initial state

The matrix element for the decay is

Yx 01pf e2 rNY 0 0~

(L-2)! 1
x1IeE rNNI (66)

The matrix element for the direct decay isV .0
W2, e FE rN (L Nf O (67)

The sum over n in equation (66) can be approximately by closure, replacing the excitation

energy by an averge AE. The ratio of the matrix elements then is of the order of

k * L-2

M (electronic) 2 N >(L- 1)
M (direct) e 0 1< ( L->

2
(L - 1) It;(68)

AE r2.

with 9 the y-ray wavelength and ra an atomic dimension. As an example, we take ra to be

the Fermi-Thomas ao/z 1/3 , L = 5, and z = 64. The ratio of the matrix elements then is

M (electronic) 128 X6
M (direct) AE (Rydbergs) a (69)

For a 100 keV y-ray, X/ao = 0.04, giving a ratio of 5/AE Rydbergs). For typical nuclear

level spacings of many keV, this effect is small. For an excitation energy of a fraction of a

Rydberg, however, the ratio is large and the isomer decay would nearly always be

accompanied by atomic electron ejection.

The presence of the electron enhances the decay because the bound electron can

provide a unit of angular momentum for the decay without the severe kinematic inhibition

which comes with low- aergy free electrons or photons. Provided bound electrons with a
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given higher L are present, this enhancement need not be restricted to AL = 1 processes for

the isomer and the electron.

Consider a nucleus with isomer level "0" and an excited state "1" which is the

possible state to be reached by external excitation. If the level is reached by an electric

multipole transition, the matrix element is of the order of

M 10 JflL (rN) etr L! 'VO(rN)N

with rN the nuclear coordinate. This transition can also be produced by the electrostatic

interaction with an atomic electron excited by the external source. We let the initial electron

level be "a," the intermediate level "n," and the final level "b." The matrix element is
2 rrrN r L A

MlbO= nr e P r(N ) ) 0(rN) drN (r) On (r)

x f * (r') (eE ' OPa (r') dr')

with

AE - E0 + ea +1o - EI - En

This can be estimated, using closure on the n sum, which gives

MIb, Oa AE dr .fi (rN) rL P ON ) V0 (rN) dr b (r) eE a(r)

This matrix element in finite only if the electronic state 4)b differs from the state Oa by L + 1

units of angular momentum.

The matrix element for the transition a - b is, however, not necessarily small since

the integral over r has the fact (rN r)/r 2. The ratio of the matrix elements is the order of
MIlb 0a _ LeL l

M1,0 - 1

This ratio can be very large if the system is near resonance and the radiation wavelength

g- 1 is large compared with the electronic scale a, which is possible if the excited nuclear

state is only a few electronvolts above the isomer level.
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VI. INVESTIGATION OF ENERGY TRANSFER TO NUCLEI

THROUGH ELECTRON NUCLEAR COUPLING

A. INTRODUCTION

In the other chapters of this report pumping schemes have been examined which it
is hoped would excite nuclear levels that could lead to grasing transitions. These schemes
involve the direct transfer of energy from an external electromagnetic field to the nucleus

while totally ignoring the intervening electronic cloud of the atom (Ref. 53). Brueckner*

has pointed out that under some conditions the electron cloud can be very efficient in

shielding the nucleus. On the other hand, the electron cloud can also serve to enhance the
coupling of the electromagnetic field to the nucleus. This chapter describes a technique

utilizing semi-classical calculations to study the effect of electron-nuclear coupling in
mediating that transfer. The technique has already proved to be successful in atomic and

molecular applications.** In the case of an atom, two or more valence electrons interact

with the atomic nucleus and with each other through the coulomb field. In the electron-
nuclear case, one or more valence nucleons and one or more extranuclear electrons interact

with each other and with the nuclear core. In the process, both nuclear and coulomb

potentials are active. In the application of the technique, a Hamiltonian is set up as in any

quantum mechanical problem; however, the trajectories of the valence particles are treated

classically. The use of the technique in the present case is driven by previous successes.
In atomic and molecular applications, calculated eigenvalues match their quantum

mechanical counterparts in precision (Ref. 54). It is the purpose of this work to investigate

the utility of using this semi-classical technique for nuclear-electronic interaction problems.

* See Chapter V of this report.
** The semi-classical approach, if valid, is very useful because it is amenable to computation. It has been

applied in at least two cases, one atomic and one nuclear. In the atomic case, the senior author,
D. Noid, used the approach to calculate eigenvalues in atomic helium. The results agreed with the
more precise quantum calculations to a high degree of precision. The semi-classical approach was used
successfully by L. Biedenharn in the studies of nuclear coulomb excitation to study and explain
experimental results in low-energy nuclear structure.
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In the realm of experimental physics, the excitation of nuclear isomers in laser-

produced plasmas has been reported (Ref. 55). The possibility of nuclear excitation by
laser-driven coherent outer electron oscillations has also been discussed (Ref 56). The

existence of electron-nuclear coupling has long been known in such phenomena as internal

conversion and electron capture. In the first, a nucleus deexcites by transferring energy to

an extranuclear electron. In the second, the nucleus transmutes by capturing a nearby

electron.

B. THE SEMI-CLASSICAL METHOD

The Hamiltonians for the problems to be posed are nonseparable in terms of nuclear

and electronic coordinates. The Semi-Classical Method (SC) was selected because the

quantum mechanical methods, e.g., variational and perturbation techniques, led to

difficulties in the selection of good basis sets. Very large numbers of terms would have to

be used, and to carry out the diagonalization of the matrices involved would put severe

burdens on the capacity and running times of the computer. Several problems were

examined:

1. Doubly magic nucleus with one valence proton and one electron

2. Two protons and one neutron (He-3)

3. Two protons and two neutrons (He-4).

The first problem, Nuclear Electronic Coupling (NEC), was modeled by the Hamiltonian

P 2  2  P

H P .. + + Vo {1 + exp [ (R - Ro)/a]}
2M n  2mrn

+11 (Z - K) e 2  e2
re iKre - Rn

where the first two terms represent the kinetic energies of the proton and electron,

respectively. The next term is the Saxon-Woods Potential (Ref. 57) describing the

interaction between the proton and the nuclear core. The last two terms are the coulombic

interactions of the electron with the nucleus and proton, respectively. The parameters are:

Rn = the nucleon position = (Xn, Yn, Z)

Ro = the nuclear radius = 1.25 A1/3 fm

a = the nuclear diffusivity = 0.65 fm
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re = the electron position = (Xe, Ye, Ze)

0 K = 1, 0 for the coupled/uncoupled case

= the screening parameter.

In the NEC Code, the particles are confined to a plane, and motions are described

by Cartesian coordinates. The trajectories of both the coupled and uncoupled systems are
generated using Hamilton's equations of motion:

an H _ aH

* xvH aH

pXn --aH -- H (71)
axn axea-- H p --aH

"Yn =  . a ye

Initial conditions for the nucleon and electron trajectories are obtained by fixing the

positions and momenta at the classical outer turning points. For the proton, these
coordinates are found by applying a WKB approximation to the Saxon-Woods potential
well. Initial conditions for the electron are similarly obtained for the coulombic well as
described in Ref. 58. In obtaining the trajectories for both particles, integrations are

* performed over short time intervals to obtain the coordinates for each point. The basic

time unit is the transit time of light through a distance of 1 fm (a basic nuclear dimension).

Typical trajectories with and without coupling are shown in Fig. 50. In this example, the

proton is situated on the surface of a nucleus having a radius of about 7.5 frn. Its trajectory

points involve integration steps of two basic time units (during which the proton moves a

distance of about 0.5 fm). For the electron's orbit, steps of 25 basic time units were used.

Then, from these orbital calculations, the time-dependent dipole moment

g x = eXn - eXe = eXn- ex e

gy = eYn - eYe = eYn- eye

is obtained. One then obtains the autocorrelation function of the dipole moment
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a. -

Figure 50. Uncoupled electron and nuclear trajectories (upper left). Magnified
nuclear trajectory (upper right). Coupled trajectories (lower half). In the

uncoupled case the maximum electron r = 1188 fm and the
maximum nucleon r = 8.66 fin.

+TC('T) < txC'T) tx(t + ) > = Jirm 1 " lxl)xta)t (2

T.-4 -T -Tf9x( ')dt 72

and, taking its Fourier transform, obtains the unpolarized power spectrum. The result, is:

1. j CT 1 2 + d 2 C+oo (0 12 (73)

This procedure is carried out for both the coupled and uncoupled cases. The

differences in the two spectra yield transition energies at which nuclear excitation may

result.

Similar procedures were applied in the He-3 and He-4 cases, but the Hamiltonians

are different. For He-3

H= 1

+ V(R 12) + V(R 13 ) + V(R 23) , (74)

where

V(R12) = - A*B*(I/R 12) * exp (-BR12)

V(R 13) = - A*BC*(1/RI 3 ) * exp (-BR1 3) (75)
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V(R 2 3) = - A*BC*(I/R 23) * exp (-BR23) + 1.44/R 2 3 , (76)

0 and for He-4

4
H = -xi 2 + pyi2) + V(R12) + VR131 + V(RI4)2Mn i1

+ V(R 2 3 ) + V(R 2 4 ) + V(R 1 5 )

The two cases are similar. In He-3, there are two p-n and one p-p interactions;

whereas, in He-4 there is one additional neutron and, therefore, 6 two-body interactions.

0 In the latter case, there are, then, three more potential terms in the Hamiltonian, and these

have the same form as V(R12 ). Here,

A = depth of well in MeV

BC = scaling parameter for potential

B = scaling parameter for R in fentometers

Rij = distance between particles i and j.

In the above expressions, there are two types of potential terms. One has the

Yukawa (see, for example, Ref. 49) potential to describe the short-range two-body nuclear

force which is the same for charged and uncharged nucleons. The other is the coulomb

potential acting between the pair of charged nucleons (protons) only. As before, the

particles are restricted to motions in a plane. The PNP computer code was used for He-3;

code NP2 is used for the four-body system. These codes, as well as NEC are listed as

Appendices K, L, M. The two problems were done for bare nuclei as a step in the

investigation of the validity of this classical approach in studying the dynamics of simple

nuclei. No electrons were involved. Only trajectories, not spectra were calculated.

C. RESULTS

First, let us consider the HE-3 and HE-4 calculations. The heart of the codes used

to solve the Hamiltonian equations is the well documented ordinary differential equation

solver (ODE) of Shampine and Gordon (Ref. 59). For a discussion of the algorithm, see

Ref. 60. Small time steps (At) are selected to keep the error estimate less than the

preselected value. Calculations of trajectories show that some interparticle distances grow

rapidly with time so that, even though the total energy and angular momentum are

conserved, the PNP complex behaves unstably in a manner indicating fragmentation into a
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diproton and a neutron. It must be pointed out that the nuclear potential failed to include

both spin and exchange. Since in chemical analogs, e.g., in H2
+, exchange forces are

known to be responsible for binding, one may logically attribute the fragmentation to that

omission.

As stated above, the He-3 and He-4 problems were exercises in studying the

application of semi-classical calculations to nuclear dynamics. The application of the

spectral analysis method to coupled electro-nuclear classical trajectories is more relevant to

the actual gamma-ray laser problem than were the two previous exercises. A good

approach is to select heavy nuclei so that excitations in the few keV to 1 MeV regime would

be realistically attainable. In addition, narrowing the candidates to nuclei consisting of one

proton outside a singly or doubly closed shell would more closely model the desired

situation. We would then have an inner electron interacting only with one loosely bound
valence nucleon anu a spin zero tightly bound nuclear core. The possibility of selecting a

nucleus with a valence neutron was dismissed. That choice would require using a magnetic

dipole interaction; and that, in turn, would complicate the Hamiltonian by making it spin-

dependent. Magic numbers for closed shells of protons include Z = 2, 8, 20, 28, 50, and

82; for neutrons, in addition to the same numbers, 126 is also a magic number. Therefore,
the nuclei initially studied include those for which Z = 29,51, and 83.

We have already seen a comparison of the trajectories of uncoupled and coupled

systems. In Fig. 51, we again see orbitals for the three cases cited, but only for the

coupled motion. In Fig. 52, we see a sample of a time-dependent dipole moment derived

from such a trajectory. The higher frequency nuclear contribution is clearly seen

superposed on the electron motion. There is a visible change in amplitude and frequency
when the coupling is turned on. Finally, Fig. 53 shows the spectral intensities derived

from the autocorrelation functions of the dipole moments for the three cases. As Z (or A) is

increased, the effect of coupling greatly increases. For Z = 29, the coupled spectrum is

essentially identical to the uncoupled. But as Z is increased, the difference is quite marked;

and, for Z = 83 (2 09 Bi = 20 8 Pb plus 1H), the electron's orbit is chaotic. From the

trajectories, one can see that the nucleus is at one of the foci of the electron's elliptic orbit.

The major electron-nucleon energy transfer occurs during the short time of closest

approach, but the effect of the change is best revealed when the electron is furthest from the

nucleus.
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Figure 51. Coupled electron and nuclear orbits for three nuclei consisting of a
closed shell plus one proton. Nuclear core, one proton, and one electron are

interacting. In the figure, Z is the atomic number and In the nucleon orbital
angular momentum. The distances X, Y are given in femtometers.
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Figure 52. The dipole moment as a function of time for both coupled (C)
and uncoupled (U) cases.
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Figure 53. Spectral intensities derived from magnetic moment autocorrelation
functions for atoms near closed nuclear shells. The uncoupled case is on the

4 left; the coupled on the right. In the figure, Z is the atomic number and
In the nucleon angular momentum. The energies are given In MeY.
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D. CONCLUSIONS

Preliminary studies with simple potentials indicate that the semi-classical model

does yield informaton on transition amplitudes for electron-nuclear excitation. More

realistic potentials, including spin dependence and exchange terms should be used in future

calculations. These studies indicate that nuclear excitation by electron-nuclear interactions

is a possible approach to achieving graser pumping.

0

b

1
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VII. A NUCLEAR LIFETIME MEASUREMENT--

AN UNCERTAINTY PRINCIPLE

Among the ideas that have been proposed for making a gamma-ray laser is the

scheme which requires the rapid narrowing of an inhomogeneously broadened long-lived

isomeric level by a series of specially structured RF pulses (Refs. 61 through 64). When

this scheme was recently resurrected, modified, and examined in depth (Ref. 65), the
criticisms that resulted included a dual statement ostensibly related to the time-energy or

time-frequency uncertainty principle. The linewidth (or lifetime)* of a level can be

determined only by an operation that lasts at least as long as the reciprocal of that linewidth

(i.e., the lifetime)* (p. 39, Ref. 1); a broadened level can only be narrowed in a time of the

order of the lifetime (Ref. 66). These ideas were debated during the workshop described in

Ref. 1.

To better understand this problem, we shall examine one method for measuring the

lifetime of an isomeric level. We shall assume, for simplicity, that the transition is not at all

internally converted, i.e., each transition leads to a detectable gamma-ray. Assume that, at
the time t = 0, we have a point source of precisely No nuclei in an isomeric state of lifetime

T. A reasonable assumption for a laboratory setup is that, nearby, we have a well-shielded

Nal(Tl) detector with an overall detection efficiency of 0.1 and a relatively negligible

cosmic ray or manmade background. The number N of isomeric nuclei remaining at time t

(Ref. 67) is given by

N(t) = No e -t' , (78)

and the number of gamma-rays emitted per second by the point-source is

T o e- tt (79)

The counting rate registered by the detection system is then given by

-0.1 x N(t)= 0.1 N e - (80)

* The words in parentheses are the author's.
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Let us assume that, at time to we register C counts in the detection system in a time interval
At << T. The reason for this assumption is that N be essentially constant during the

detection time. Since detection is a Poisson statistical process which is approximated by a
Gaussian description for C > 10, the fluctuation, AC, in the signal C, is given by )-C
which can be considered a source of noise large compared to all other background noise in

our "clean" laboratory. Thus,

S
(81)

We now have
No

C = 0.1 x N(o) x At = 0.1 -N- At (82)

We assume that, in comparison to counting statistics, No and At are known or measured

with precision. The lifetime, as determined by experiment using equation (82) is given by

texpt =+tf- %)= r±At (83)

No AC
=0.1 - A ± -C C

AC -
AT- C - T '(84)

or 9

At
(85)

This merely tells us that in order to measure the lifetime to, say, a 1 percent precision

A r = 0.01 - 1 (86)

or

C = 104  (87)

That is, we must detect 104 gamma rays in a time At short compared to T. Is this

reasonable? Consider that we have a radioactive source with a mean lifetime of, say, one
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week, and a strength of 1.0 tCi. Note, at the Naval Research Laboratory there is a

radiation facility of 60 Co with a strength greater than 1000 Ci (lifetime C = 7.56 yr).

A 1.0 giCi source (a typical strength for a laboratory calibration source) emits 3.7 x 104

gamma rays per s. The detector will produce a counting rate of 3.7 x 103/s. Thus, to

achieve the requisite total number of counts, C = 104, will require a At < 3 s. In other

words, with our idealized assumptions, the mean lifetime of one week was determined to a

one percent precision in a time of 3 s. In a general laboratory situation, No is not well

known--but the possibility of obtaining a pure macroscopic sample of the isomeric material
violates no known principle. Thus, to determine a lifetime t in a time much less than "t

merely requires a source of sufficient but not excessive strength.

The relationship between the mean lifetime, -, of an exponentially decaying

eigenstate and F, the full width at half maximum of the Lorentz-shaped energy spectrum

(Ref. 68) is given by

* F =I . (88)

Note, from equation (82), we have

At _ 1 = 1-'r- - - (89)

With equation (88), this yields

A* (90)
S/N

We must emphasize that, in the "uncertainty" relationship, At is the uncertainty or standard

deviation in the measurement of r. It is interesting to note that when C = 1, At = 't. Using

the relationship

F = llAO , (91)

we obtain

Ar Awo = 1 (92)
S/N

which resembles the uncertainty relationship well known in electrical engineering

(Ref. 69), namely,

A* At (93)
S/N
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In this expression, At and Ao are the uncertainties in the simultaneous measurements,

respectively, of the round trip time and frequency of the radar signal. Here, S and N are

the signal energy and the noise power per cycle.

One point remains. Equation (88) merely tells us that a determination of 'r with a

given percentage error is automatically a measurement of the width of the level with the

same precision; and equation (89) states that if the lifetime is measured in a time interval

short compared to that lifetime, the precision of that measurement depends only on the

strength of the source. None of this mandates a limitation on the time required to narrow

an inhomogeneously broadened level.

0
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APPENDIX A

SYMMETRY IN SPONTANEOUS DECAY--
*- BACKGROUND INFORMATION

A.1 BASIC SYMMETRY

A number of algebraic results of the theory of groups is applicable in models of

physical systems in which symmetry plays a role. Examples of such systems are the

structure of molecules, atoms, and nuclei as well as the original classification scheme of

elementary particles. These same aspects of symmetry arise in the enhanced spontaneous

decay theory as presented by Dicke. The notes in this Appendix summarize common ideas

and nomenclature used in group models (Ref. A. 1), and are particularly useful in

understanding Dicke's model.

w Symmetry arises when something "looks the same". The Pentagon, if rotated by an

angle of 720 will look the same when viewed by an observer on the outside. Of course,

following the rotation some workers on the inside will also be moved. Let us refer to the

inside workers as degrees of freedom in an internal reference frame. As far as they are

concerned, we could move their assignment to offices 72' in the opposite direction to

compensate for the change.

In general, the movement of rooms, labeled by numbers, and the movement of

people, labeled by letters requires the use of two types of symmetry operations; operations

* on the numbers in the number space and operations on the letters in the letter space. We

can denote the letter operator G(cc3) where G(c43) replaces the letter 0 by the letter a. In

general, the letters are a, [i, y... although we need only consider a and 3 for our purposes.

We can further denote the number operator P(ab) where a and b actually take on integer

* values. For our purposes there are ultimately many such integer values; say up to 1020.

For illustration we consider the operation on a configuration:

0
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Figure A-1. Configurations of Letters and Numbers

40

The configuration for the Pentagon can be labeled "clJ32a 30a40 5" but it is clear that as long

as we list the letters in their "bins" in numerical order; we can drop the integral subscripts.

Thus, the previous Pentagon configuration is now labeled cakczca. The hexagon has

configuration c13pc4x313. S

A.2. OPERATING IN THE NUMBER SPACE--THE PERMUTATION
GROUP

All permutations of the integral numbers can be written as interchanges of the two

numbers, or cycles. Thus, P(12) means interchange the contents of bin one with the

contents of bin two. For the hexagon configuration:

P(12) a~aaP3f = P3aaappf

The new configuration is distinguishable from the old configuration.

In general, the collection of all permutation operators for n objects forms the

permutation group denoted Sk. Even though all permutations can be written as bi-cycles

some can also be written in longer sequences; such as replace one by two, two by five and

five by one, P(125).

P(125) c4acpD = 3caaap

In fact, the lengths of the maximum cycles of the permutations in Sk are k, k-l, k-2, ... 1. S

The permutations are then put into classes labeled by the cycle lengths. For n = 3, there are

classes labeled by [3], [2,1] and [1,1,1] indication cycles of the form (123); (12)(3) and

(1)(2)(3). The cycles can be arranged in graphs of boxes:

A-4
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[3] [2,1] [1,1,1]

Figure A-2. Box Diagrams of the Classes

The number of classes in a group (here the example treats the group S3) is equal to the

number of irreducible representations, which are now explained.

A configuration, say ap3p, is an example of a basis function, fi. All of the basis

states (limited to those with one a and two 13's) are ap3p, Pa3 and P3pa, denoted fi; i =

1,2,3. The space spanned by these basis states (linear combinations of the basis states) is

invariant when the group operators map the space to itself and not outside the space. The

representation of the group gives the result of the operation on a state in the space and is

often written as a matrix, thus:

P(12)(3) a313 = 13a3,

implies that a column vector [100] (where the basis is in the order app, 1ac and Ppa)

40 maps to the vector [0101. Furthermore, it is easy to see:

P(12)fl = f2

P(12)f 2 = fl

0 P(12)f 3 = f3

can be written in matrix form

P(12) = [ o

Figure A-3. Matrix Representation of the Permutation Operator

which is how one might obtain a matrix representation. The invariant space sometimes can

be subdivided into smaller invariant spaces. Such spaces are reducible and so are their

representations. Irreducible spaces and their associated irreducible representations cannot

be further reduced.
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The basis states of the irreducible representations can be found from the box

diagram or Young graph by a set of rules. Since the number of classes is equal to the

number of irreducible representations, the rules can be well-defined. This marvelous

result, worked out by Young, is accomplished in three steps; construction of the Young

tableau, identification of a starting function. and construction of the state. This is depicted

in Fig. A-4.

Figure A-4. Young Tableaux for the Case of [2,1] in S3

Step One. Fill the Young graph with the integers 1, 2, ... K such that the

numbers increase across a row and increase down the column.

This irreducible representation will be two-dimensional since there are two Young

tableaux.

Step Two. Construct the starting function by placing the letters a, J, y ... in the

Young graph such that the letters "increase" or "stay the same" across the row and increase

down a column. This is shown in Fig. A-5 for the a, 03 space [to later be called SU(2)], in

the case of the Young graph of the previous example. There are only two allowed starting

functions; now read off as aaf3 and a13.

Step Three. Operate with the Young operator on the starting function. This

requires getting a Young operator from a Young tableau. This is done by symmetrizing

across a row followed by anti-symmetrizing down a column. This means writing the

complete operator as the sum of the identity operator and all possible permutation

operations involving the integers in the row with plus signs. Anti-symmeterizing is

accomplished by writing all possible permutation operations looking down a column with

the sign (-)c where c is the number of bi-cycles that the permutation operation can be

decomposed into. Example operators are shown in Fig. A-6.
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a 3  a2p ap2 P3

Unallowed
Starting

aa aa PappoFunctions

JPaa pIpa

Alowed

aaP aJ33

Figure A-5. Unallowed and allowed starting functions for the example of [2,1]

Figure A-6. Associations of Tableaux and Permutation Operators
(Ignoring Normalization)

Now one operates with the Young operator (obtained from the tableau) on the starting
function (app):

[(1) - (13)] [(1) + (12)] app5 = a3p + a3p - P3a

[(1) - (12)] - [(1) + (13)] app = apo + ap13 - Pap

whereas from the completely symmetric tableau one obtains

cap + p7 + Pap.
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For the configuration ac 2 and the completely antisymmetric tableau, there is no function.

The othonormal irreducible basis states for c432 are summarized in Table A-1.

Table A-1. Classification of Orthonormal States of ctIp2

Symmetric Mixed-symmetric Anti-symmetric

L [a(Po+P3c43 ]aI 1 [(33r-p] No State

-- [aP3-2P3c3+[3a]

Thus, we now can fully understand the origin of mixed-symmetry states. The

classification of states having internal degrees of freedom (in the examples a and 3)
according to the permutation group is important in understanding Dicke's theory of

enhanced spontaneous decay. This section has explained the role of permutation number
symmetry. The internal degrees of freedom (x and 03 are further explained in the next

section.

A.3 UNITARY SYMMETRY

The nature of the unitary groups is important to our understanding of certain

physical quantities of interest--spin, isospin, angular momentum, etc. Now it is of interest

in understanding collective interactions in a field.

A brief "history" helps. The general (complex) linear group in N dimension

denoted GL(N) consists of all non-singular homogeneous linear transformations of the
points in an N-dimensional complex space or, more simply, N x N dimensional matrices

with complex coefficients aij, i, j = 1, 2, ..., N, and a non-vanishing determinant (so an

inverse exists). The group U(N) is a subgroup of GL(N) where the complex conjugate

transpose of the matrix [uij] is its inverse. The group SU(N) is the subgroup of U(N)

consisting of all matrices having determinant-of-magnitude unity. The group O(N) is an

important subgroup of GL(N), consisting of all real orthogonal transformations in an

N-dimensional real space. O(N) is a direct product of the three-dimensional rotation group

R(3) or SO(3) and the two-element group containing the identity element and the inversion

operator. Each particular group has a number of degrees of freedom at1, a2, ..., ah in h
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parameter space. These parameters lie in a range over closed intervals for SU(N), U(N)
and O(N); thus, these latter groups are "compact". For a particular point in the parameter
space; say al, a 2 ..., ah = a there is a group element A. For another parameter set, c',

there is an element B. Since AIB is in the group, there is some mapping f which gives the
parameter set ox" of AB in terms of the parameter sets a and a'.

a" = f (a, ') . (A-i)

The parameter set of the identity is 0o . The existence of an inverse set of

parameters, say a- 1, requires

a° =f(a,a -1 ) (A-2)

Likewise, one may have a function g, such that

,O-I = g ( a, a 0 ) (A-3)

when the functions f and g are well-behaved and possess derivatives to all orders, the

group is said to be a Lie group. This essentially means group elements can be found from

a "Taylor" expansion from some specific element; such as the identity and the group can be
understood "from the infinitesimal" through the use of infinitesimal group generators. The

group generators physically act as quantum mechanical operators.

If a group element A(a) is near the identity element E(aO) (in this notation we refer

to the group element with its parameters in parentheses) then "a = ao + da" and we can

say,

A (a + dai ,... a + dah) E + G daI + ... +G h dah (A-4)

The G's are the generators:

0 0 0
limit [A(a0  •a O+ dai,.-,ah)-E]

* G~= da.--i dx 1 .---0 doc i1 a

a A (A-5)
a 1C

In matrix form:

[al 1. a+1 = ; [ d a l 1 daA-6La21 a22 J + Lda2I da 221
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and the generators are:

We can now consider the effects of symmetry. If we rotate the Pentagon by 720

clockwise, a specific office now overlooking the Potomac was previously 72' counter-

clockwise and facing more northerly. Mathematically, we can state that the rotation of the

building is related to the inverse rotation of the office assignments:

Af(P) = f (A- I P) . (A-8)

For a matrix A near the identity, the inverse A-1 has components: ij - I =ij - daij.

Hence, in the two-dimensional case:

A([a ii]) f (xI x2 ) = f(xI -X1da 1 1- x2 da 12 ,'x2 - x 1 da 2 1 - x 2 da 2 2 )

= f(xl, x2 )-(ldal1 + x2 da1 2 ) f -

= X (E+Gijdaij)f (A-9)
ij

where the generators have the forms: 0

ij xj (A-10)

the generators Gij equation (A-7) and Gij equation (A-10) have the same group properties. •

The set of h generators satisfy:
h

Gi G Gi= c! GI (A-11)

where ij = 1,2,...h, and where c!. are structure constants. Thus, we understand the role

of commutation relations.

For SU(N) groups there are n2 - 1 parameters and consequently, n2 - 1

generators. Of these, n2 - 1 generators n - 1 are diagonal and can be used to fix 5

eigenvalues. There are also n - 1 additional diagonal Casimir operators which are

quadratic, cubic, etc., in powers of the generators. The generators are then important for

our purposes. They govern the rates of decay of the Dicke states constructed previously.
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When the generators of a group commute with the Hamiltonian of a system, then all

of the operations of a group commute with the Hamiltonian and the group is a symmetry

group. The diagonal generators are then operators corresponding to conserved physical

quantities. Invariant operators will also commute with th,. Hamiltonian of a system; and the

states of the system have well-defined eigenvalues of these operators. Moreover, the states

of the system are then states of the irreducible representations.

The eigenvalues of the diagonal generators for the states of the defining
representation can be used to construct a vector m in space whose coordinates are the

eigenvalues of the diagonal generators. This vector is the "weight vector." The "root

vectors" are the differences in the weight vectors. The diagram of states of irreducible

representation is referred to as a weight diagram; and generators pictorially shift from point

to point on the weight diagram. These pictorial concepts are useful in visualizing the group

structure and symmetry of physical systems. We use them in the main section of this

paper.

The group SU(2) has three generators which we cal jx, jy, and jz. Their matrix2 2 2 2

form is well known (Pauli matrices) and the Casimir invariant is J = X + Jy + Jz . The

eigenvalue of Jz is called m, and the eigenvalue of J2 is J(J + 1). The fundamental weight

a diagram is one dimensional since there is only one diagonal generator, Jz. The

fundamental basis states are usually labeled a and 03, having Jz eigenvalues of +1/2 and

-1/2, respectively.

From the matrix representation for the SU(2) group the SU(2) algebra is (well

known to pedestrians):

J+ = Jx + iJy, J- =Jx - iJy

[Jz, J+] = + J+

[Jz, J-] = - J- (A-12)

The most significant aspect of the background group theory in this Appendix

pertinent to understanding Dicke's theory of enhanced spontaneous decay is the

classification of many-particle states simultaneously according to the permutation group of

k objects and according to the unitary group in n-dimensions. This is most conveniently

accomplished for our purposes here through the use of the Young techniques. The SU(N)

symmetry is indicated by the upper-left superscript in the Young box, as shown below:

0
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2

D for SU(2)

3
3D for SU(3)

(A-13)

N
D for SU(N)

A single box represents a "single particle" and, as used previously, it is convenient
to introduce Greek labels. Thus, for SU(2) we use aX, 3. In Dicke's theory a and 03 refer 0

to excitation states in a single two-level particle system. The wave functions of the many-

particle states are found by the direct (outer) product:

2 2 2

[--] (& & E-] etc. (A-14) 0

For k particles, the resultant tableaux would extend to k boxes in height, except for

the fact that no more than N internal states can be anti-symmetrized in a vertical column.

Because of this constraint, the tableau are always restricted to N rows for U(N). For 0

classification according to SU(N), where the total number of boxes is unimportant,
"closed" columns are conveniently dropped.

The simultaneous classification of k = 5 objects according to S5 and two-level a

and 03 excitations according to SU(2) is depicted in the following example. The group Ss

has 7 classes, of which only three are allowed in SU(2). They are [5], [4,1], and [3,2].

The four classes not allowed have more than two columns. The class [5] has only one

tableau, but it has six starting functions. They are aaaaa, caaa3, ozccocf33, acap3p33,

o 33I3I3, and 3030313. Continuing in this manner, the classification scheme depicted in

Fig. A-7 emerges.

The expressions for degeneracies are discussed in the main text; and here we show

the degeneracies as found using the numbering of the Young graph. The mixed symmetry

states depicted here are associated with higher dimensional, irreducible representations.

A-12



SU(2) Symmetry (r and m labels)

m r=5/2 r=3/2 r=l/2

+5/2 .

+3/2 .. . . .

+1/2 .. . . .

-1/2

-3/2

-5/2

* [5] [4,1] [3,2]

S5 Symmetry (tableaux)

Figure A-7. The Simultaneous Classification of States of S5 XSU(2) and
Associated Quantum Numbers are Depicted Here for Five Particles.

Although the wave functions are rather tedious to express, they can be found using

* the Young operator'on the starting function. We emphasize the Young technique since it is
easy to visualize for higher N, in preference to the Clebsch-Gordon approach. As long as

the quantum numbers remain "good quantum numbers" there is no need to know the states

explicitly. For more than two-level systems, in SU(N), the coupling coefficients are

* needed and one way is to know the states according to the differing group chains. The four

functions thus found for the [4,1] symmetry will be found to be linearly independent,

which is sufficient to span the entire invariant space, but they will not, in general, be

orthogonal. Thus, it is assumed that normalization is achieved at will, and the equivalent

is Gramm-Schmidt orthogonalization may be needed in practice.
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APPENDIX B

INTRODUCTION TO ENHANCED SPONTANEOUS
* DECAY THEORY

B.1 INTRODUCTION TO THE DICKE SUPERRADIANT THEORY
0 This appendix provides a brief introduction to aspects of Dicke superradiance used

in modeling pulse characteristics. The original symmetry approach of Dicke is then
pursued.

0 B.2 COHERENCE IN SPONTANEOUS RADIATION PROCESSES

Dicke's theory of superradiant emission is a theory of coherence in spontaneous

radiation processes. The underlying assumption or "observation" of the theory is that all
molecules (emitters) are interacting with a common radiation field and hence, cannot be
treated as independent quantum mechanical processes. For non-overlapping spatial
wavefunctions, particle symmetry plays a role with respect to the common radiation field.

The example of two two-level particles illustrates the main point. A proton in a
* uniform magnetic field has two states: one with spin component ms = + 1/2 denoted I x>

and one with spin component ms - 1/2 denoted I 13>:
I a> ms = + 1/2 Spin-1/2 Multiplet

13> ms =- 1/2 (B-1)

For two such protons (labeled #1 and #2), there are four states:

a 1a2

2-112 (a 1p2 + 1la 2) 2-1/2( a, 02 - 01 ( 2)

131132 (B-2)

Triplet (superradiant) Singlet (subradiant)

B-3
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The state a1032 has a 50 percent probability of decaying to 0132 since it is a linear

superposition of the ms = 0 singlet and triplet states. As far as emission is concerned, the

triplet state is "superradiant" and the singlet state is "subradiant".

Some assumptions pertain to particles physically treated as "gaseous." The gaseous

system as a whole is considered to be treated as one quantum mechanical system, and

Dicke makes five assumptions concerning the radiating "molecules."

(1) The gas dimensions are assumed to be small with respect to a radiation
wavelength

(2) The walls of the container are transparent to the radiation field

(3) Collisions do not affect internal states of molecules

(4) Transitions take place between two non-degenerate states of the molecule

(5) There is insufficient overlap in wavefunctions of separate particles, requiring

that wavefunctions be symmetrized.

The Hamiltonian for the two-level system is obtained as follows. First some

definitions:

E = ho) = excitation energy

Ho = Hamiltonian; acts on center of mass coordinates

n = number of particles

j, i = particular particles

Rj3 = an operator with eigenvalue + 1/2 if the particle is excited, - 1/2 if not

excited

Then the Hamiltonian is given by:

H =Ho + E R (B-3)
j=l,n

where

[Rj3, H-o] = [Rj3, Ri = 0

A typical total system wavefunction for an energy eigenstate is

gm = Ug (r• ... rn)[ + - + . . •],(B-4)
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where the first factor U is a function of center of mass coordinates and the second factor

gives the signs of the internal energies of the emitters. For n, particles in the excited state,

and n- in the unexcited state,

n = n+ + n_

m = 1/2 (n+ - n- (B-5)

and

Egm=Eg+ mE

The degeneracy of the states having energy Eg. is

n0 / [ (n/2 + m)! (n/2 - m)!] (B-6)

This is an important factor that warrants further study since it will predict diminishing

superradiance if less than complete inversion is achieved.

0 Two other operators are of importance in addition to Rj3 and Ho . They are Rj I and

Rj2. The three Rj operators are the three infinitesimal generators of a group with SU(2)

algebraic structure:

0Rj l [ .. + . . 1 /2 [ . -+ .

Rj2 [..+. ]±=1/2 i [.-+.

Rj3 [.......]=:1/2 [.+.] (B-7)

For all n particles:
Rk = XRjk k =1,2,3 (B-8)

j=l,n

and the well known quadratic Casimir invariant of SU(2) is
2  2 2 2 (B-9)R= R1 + R 2 + R 3 (B9

Finally,

H = Ho + ER3  (B- 10)

R3'gm = m gm . (B- 11)
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B.3 INTERACTIONS WITH THE ELECTROMAGNETIC FIELD

That the interaction term of the particles with the electromagnetic field can be written
in terms of the SU(2) generators is important in Dicke's theory. The interaction term is

written as:

Hi =-A(i.) I ekP/mkc ' (B-12)
k=1, N-I

where

rj = center of mass position of the jth particle

ek , mk = charge and mass of the kt h particle

pk is an odd operator with off-diagonal elements

The general form of the interaction terms is

- A (rj) . (e1 Rj I + e2 Rj2 ) ,3(B-13)

where el and e2 are constant real vectors; the same for all particles. Then the general form

of H 1 is

HI= - i A (rj) (el Rjj + e2 Rj2) (B-14)

In a small gas sample,

H1 = -1j A(0)" (eI R1 +e 2 R2) ,(B-15)

where A(O) is evaluated at the center of mass. The small sample size eliminates effects of
the center of mass coordinates. Assuming Ag = 0 (g could be a motion quantum number,

for example) eliminates Doppler broadening of the transition frequency.

The operator H1 has selection rules Am = ± 1. R1 and R2 account for transitions
having Am = ± 1. R3 is a diagonal operator. Since H and R2 commute, and since the

Casimir operator R2 has eigenvalue r (r + 1) it is convenient to introduce r as the
"cooperation number". Thus, I m 1 < r < n/2.

'gmr denotes the new eigenstates of r,

H'gm = (Eg + mE) gmr (B- 16)

R2Fgr,. = r (r + 1)Fgm.r (B-17)
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The operators of SU(2) are related to the permutation group S2 of symmetry
operations of the one-dimensional simplex. Thus, all weight diagrams will be lengths of
one-dimensional lattice points. The highest weight state is denoted 'Fg, n/2, WJ2 and used to

get the lower states

'1 grr = 'g, n/2, n/2 = Ug [+ ...+]

2 2 -1/2
• FTgmr = [(R 2 - R - R,) - 2 (R1 - iR2)]r- Vgrr (B0-18)

where the multiplicative factor obtained in "lowering" is described in most presentations on

angular momentum theory. The matrix element:

(g, r, m l elR1 + e2R2 I gr,m -1+1)

1/2 (e1±ie2) [(r±m)(r-/+ m+ 1)]1/2 (B-19)

Thus, spontaneous radiation probabilities are given by

I=1 0 (r+ m)(r-m+l) (B-20)

For example, the decay rate for one excited particle is

re=r=.1/2 I=I o (1/ 2 + 1/2 ) (0 + 1) = Io  (B-21)

For n initially excited particles

I = nIo  (B-22)

For n particles, where r is large I m I is small; r n/2, m = 0 (zero population inversion)

and

I = 1o (n/2) (n/2 + 1) (B-23)

This is the largest rate at which a gas with an even number of particles can radiate
spontaneously. In summary, the characteristics of the enhanced spontaneous decay are

(1) IaN 2

(2) An (population inversion) is zero

(3) with large values of r radiate more strongly than multiplets with smaller values
ofr

Note that n particles, where r = m = 0, never radiate.

A gas which is radiating strongly because of coherence is called "superradiant."

Some ways to make a superradiant state are the following:
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(1) Excite all molecules to r = m = n/2 and wait for decay to the "superradiant
region" given by m - 0.

(2) Start in the ground state: r = -m = n/2 and irradiate with a sufficiently intense
pulse to the state where m - 0.

Effects of thermal equilibrium provide for randomness in the initial state, which can

be calculated using standard statistical mechanics techniques. At high temperature, it is

found that r = m = -nE/4kT. Following an irradiating pulse to excited states with m - 0 the

radiation rate is

I - I0 r(r+l) - I0 n2 (E/4kT)2  (B-24)

Finally, for any temperature, Dicke shows

I -- (1/4) 10 n(n-1) tanh2 (E/2kT) + nI0 /2 . (B-25)

B.4 CLASSICAL MODELS

For large r we can consider classical models of Dicke superradiance. This approach

appears to provide convenient analytical solutions. Figure B-1 summarizes the

coordinates.

z-axis

m=Irlcos 0

Figure B-1. Polar coordinate system used in the classical model.

The component m is approximately m = r coscp. With this substitution, the

radiation rate becomes I = Io r2 sin 24 (ignoring linear terms in r). The internal energy of

the gas is

mE = rE cosp( = ET . (B-26)
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Then

dET/dt = -rE sino (do/dt) (B-27)

Using Iio 1= IdE/dt I,

10 r2 sin2o = r E sin 4) (do/dt) (B-28)

or

(d/dt) = (Io r /E)sin 0 = a sin (B-29)

For 4) = 90', m = 0 and sin(p = sech (at). The form of the radiated wave is

A(t)=ei(L)tsin4,t>0 (B-30)

The Fourier transform is

F(P) = (x/2) 1/ 2 (a- 1) sech [ x (P-0&)/2a] , (B-31)

which is a non-Lorentzian pulse shape. The width at half-intensity is

Aw = 1.12 yr . (B-32)

Here, y is the linewidth for isolated single particles. For the case of maximum r,

Aw = 1.12 yn/2 (B-33)

B.5 A GAS OF LARGE EXTENT

This case considers:

(1) A gas which occupies a region having dimensions larger than the radiation
wai, elength (for 50 keV, 1 = 6 x 10- 10 cm or 0.06 A)

(2) A gas region small with respect to the reciprocal of the natural linewidth. (For

c = 1 s. F is approximately 10-17 eV; thus, 1/Ak is approximately 10-11

cm.)

For this case, coherence is considered for a fixed direction k, and now the R

operators of the SU(2) symmetry are labeled by k. Thus, correlated states of the gas for
which radiation propagated in the k direction is coherent are described by '/mr for

direction k. A photon of momentum k arises from transitio, s having Ar = 0, Am = + 1:
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I(k) = %o(k) (r+m) (r-m+1)
h

r,- (B-34)
2T

On the other hand, where k # k', the selection rules are

Ar=±1,0;Am=±l (B-35)

In summary:

(1) Incident radiation is assumed to be plane with a propagation vector k

(2) The gas radiates in the k direction

(3) Radiations in directions other than k tend to destroy the coherence with respect
to the direction k by causing transitions to states of lower r.

B.6 DOPPLER EFFECTS

Since H0 , and Rk2 do not commute, the eigenstates are not stationary. Physically,

there is relative motion between the oscillators, as depicted in Fig. B-2:

0 0 field with
p(+) =hs no photons

00 0 emits in field
p(-) =h(s-k) of photon ofmomentum k

Figure B-2. When Recoil Effects Must be Included, the Emitters Emit Photons
of Momentum k with Momentum Changes Reflected by a Change in the
Deexcited Emitter's Velocity (in the Simplest Form of Dicke's Theory).

Now the appropriate states are written as:

Ts = exp( i s 1 rj) [+++... +(B-36)

Tsmr = [(Rk 2 - Rk32 - Rk3) - 1/2 (Rkl - iRk2)]r -m 'Fsr (B-37)

These latter coherent states are superpositions of states such that the excited particles have

one momentum and the unexcited have another (recoil then prescrves the coherence).
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B.7 PULSE-INDUCED COHERENT RADIATION

In this case the radiation field is turned on for a short period of time. The system

evolves in a complicated manner as discussed in Chapter II. The emitted pulse is highly

anisotropic and dependent on the duration of the pumping.

Further routes of investigation include the study of correlation of successive

photons. For an inter-particle spacing large compared with a radiation wavelength, the

radiation rate averaged over all directions is the incoherent rate.

B.8 SEMICLASSICAL SUPERRADIANCE

The Feynman, Vernon, and Hellwarth (FVH) representation provides a convenient

pictorial framework for understanding superradiant emission in a standard semiclassical

approach. Further details of the treatment of transitions in two-level systems in the FVH

approach are discussed in Appendix C.
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APPENDIX C

BRIEF OVERVIEW OF SEMICLASSICAL APPROXIMATIONS

TO THE GROUP THEORETICAL APPROACH

TO SUPERRADIANCE

C.1 THE FEYNMAN, VERNON, HELLWARTH REPRESENTATION OF
TRANSITIONS IN TWO-LEVEL SYSTEMS

The Feynman, Vernon, Hellwarth (FVH) representation provides for an alternate

* description of superradiance employing a semiclassical description of the radiation field.

The theory of vectorial precession in three-dimensional space according to the group 0(3)

is, not surprisingly, equivalent to a quantum approach based on SU(2) since SU(2) is
homomorphic onto 0(3). The level scheme is the same two-level system discussed

* throughout the text, and the vector r, its z component m, and the angle 0 are depicted in

Fig. B-1 of the previous Appendix.

Quite simply, in the FVH approach,

HT = ihPD/t , (C-1)

where

H=Ho+V(t) (C-2)

Let

(t) = a(t) Ua + b(t) Ub , (C-3)

where ua and ub denote excited and deexcited basis states.

Here, a(t) and b(t) have real and imaginary parts. One component (of the four) is

the absolute phase of y(t). The three-component Bloch vector is:

r = (ri , r2, r3) , (C-4)

where
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ri=ab*+ba*

r2 = i(ab* - ba*)

and

r3 = aa* - bb* (C-5)

The following definitions apply:

(01 = (Vab + Vba) / h

C02 = i(Vab - Vba) / h

3 = co (C-6)

Here Vab and Vba are matrix elements of the potential V describing the

electromagnetic transition:

V= -1/2 (+E-+t-E +)  (C-7)

Using all of the previous equations, it is easy to show that the equation of motion is

dr/dt = co x r , (C-8)

Its solution is well known.

C.2 SUPERRADIANCE IN THE VECTOR MODEL

Superradiance in the vector model is described in many elementary texts. The

superradiant state arises from a 7/2 pulse, as briefly summarized here. The transition

energy is assumed to be-fco where co is the resonant frequency. Initially, all of the emitters
in the system are in the state ub ; thus, rR(O) = -1 aIl where allI is the z direction in an

internal rotating reference frame (rotating at frequency co). For a time to, the field is turned

on such that Icoj Ito = 7t/2. Here, the frequency col = -2E/h corresponds to the interaction

of the transition dipole p. with the field E and in the usual picture the vector co = C0T al.

According to the dynamics of the vector r discussed in section C. 1, the vector is brought to

the position depicted in Fig. C-1. When the field is turned off at Icor Ito = t/2, the system

is "midway" between the upper and lower states--this is the largest transition dipole

moment; Ia 2 = lb 2 and the projection on amII is zero.

40
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z-axis

r-vector

* 2t /2
pulse

Figure C-1. The superradiant state is achieved from the ground state by a
90-degree exciting pulse leading to 50 percent population inversion. This
state of maximum dipole moment radiates at the maximum rate described

by the dynamical equation summarized In Section C.1. The FVH approach
is thus an "0(3)" vector model achieving similiar dynamics as

Dicke's original "SU(2)" theory.

In this particular superradiant state the particles are contributing coherently to a

single giant dipole moment. The decay of this state is characterized from the increased

radiation rate that characterizes the spontaneous decay of the giant dipole, that is the rate of

fall of the r vector. There is no explicit reliance on the r "cooperation" quantum number

other than its association with the length of the r vector. Also, no more than one state

having Na = Nb is distinguished, in contrast to N such states in Dicke's quantum

formulation. Specific applications of the semiclassical model are discussed in the main text

in more detail, where various pulse characteristics are discussed.
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APPENDIX D

RESONANCES IN THE APPROXIMATES
BONIFACIO-LUGIATO MODEL

This appendix outlines an analytical approach to the solution of the approximate

* equations for the general, non-Markovian, B-L model for superradiance when

inhomogeneous line broadening is neglected. The method is that used in Ref. D. 1 to

calculate the atomic inversion and emitted radiation according to the earlier Markovian

model introduced in Ref. D.2.

In Ref. D-3 B&L derived the approximate equations

t(mt) - ds e-K(t-s)

0

* {g(m) p(ms) - g(m+l) p(m+I,s) + [g(m) + g(m+l)]N (m,s)

- g(m+l)N (m+l,s) - g(m)N (m-l,s)}

N(m,t) -- 2KN (m,t) + i- ds eK(ts)
QN f

0

{g(m+l) [p(m+l,s) +N (m+l,s) -N (m,s)]} , (D-l)

where

+ - m)N( -rel) N < m N
g(m) 2 2 T 2 (D-2)

0, otherwise,

for the occupation probabilities p(m,t) of the atomic Dicke states r,m> and the

corresponding photon expectation values N(m,t) of the radiating electromagnetic field,

given a particular value (N/2)(N/2 + 1) for the atomic cooperation- eigenvalue. In equations

D- 1, in the form given here, the "inhomogeneous broadening" decay time T2 is assumed to

* be infinite, although in Ref. D.3 it is included as part of both integrands on the right hand

side of the equations. Also in equation (D- 1) time is measured in units of the cooperation
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time tc and K is a corresponding dimensionless parameter equal to the product of rc with

the reciprocal photon propagation time parameter originally designed as K in Ref. D.3.

Thus, here

K =,c Koriginal

Along with equation (D-i) the standard initial conditions

N (m,O) = 0;

p(,) 0, _ D3

22'

are assumed. These conditions imply that initially all N atoms are excited and the photon

field is in the vacuum state. Together with equations (D-l) they imply that N(N/2, t) = 0.

With neglect of T*, the solution of equation D- I can be found by means of the

Laplace transform. Thus, setting p(m,z) and N(m,z) for the Laplace transforms of p(m,t)

and N(m,t), equations (D-1) is equivalent to

(Z +2K )N( , z)' 4 P(N, z) 0(Z+2+ z+'-- z+K p  2

4 (N 4  (N z) =1
- z+KN -1 , z

for the highest m values and
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'm Ym Ym
(z+2K+ z---)N(m- l,z) -7 p(m,z) - N (m,z)

m m+ Y m+l
-m N(m- 1, Z) +(z + K) p(m, ( z+K )N (m-l,z)

Ym+1 Ym+ 1
z+ N (m+ 1,z) - z+K p(m+ l,z) (D-4)

for the rest, where

* 4g(m) (D-5)
Ym= N

The quantities N(m-1, z) are naturally matched with the quantities p(m,z) in

equation (D-4) in recursive pairs, the quantity N(N/2,t) already having been found to be
0 zero identically. The determinant, Det(z), of the matrix on the left side of equation (D-4) is

given by

Det(z) = (z+2K + 7 M (Z+ YM m Z2 +2Kz+2YM (D-6)
(z + K)

Accordingly, the inverse matrix, which can be used to solve the equation (D-4), is given by
- Z2 + Kz +Ym Ym

DET(z) ' DET(z)
2- =(D-7)

Ym z2 + 3Kz + 2K' Ym
LDET(z) ' DET(z) -

The zeroes of Det(z) determine whether the solution pair N(m,t) and p(m,t) for a

given value of m oscillate with a natural frequency that does not depend on the right side of

equation (D-4). If the zeroes are both real, those quantities do not have a natural oscillation

frequency; if the zeroes are complex (in which case they occur in conjugate pairs) they have

a natural oscillation frequency co given, except for sign which is conventionally positive, by

the imaginary part of either zero.

The zeroes are given by

z=-K± 2 -2y =-K± K2 -m) (D-8)
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The condition for a natural oscillation frequency corresponding to a given m is therefore

K< 2 N-m) (D-9)

The definition of the g(m), along with (D-8), together imply that ringing occurs in

the system if and only if

K < 2,F2

This is a more precise condition for the existence of a non-Markovian stimulation effect

than the Ref. D.3 condition, which in terms of the present notation would be K - 1.

If oscillation at a natural frequency co occurs for some value m' of m, then, since

the corresponding N(m'-l,t) and p(m',t) will contribute to the source in the equations for

N(m'-2,t) and p(m'-l,t), those quantities will also oscillate with a component having the

frequency co. Thus, if there is a natural frequency again equal to Co for some m < m', the

corresponding N(m-1,t), p(m,t) will exhibit resonant vibrations.

It is evident from (D-8) that this can occur if and only if

g(m') = g(m)

Since

g(2- It ) - (p. +1) (N-.),

g (121 g) =g(- -2)

if and only if

N=p.+v+l

It follows that for any N > l and any 'u such that 0 < V < N - 1,

g(2i- V) = g (V+l1--A) (D-10)

It follows from equation (D-10) that, if a natural frequency occurs for some value

of m given by N/2 - v or v + 1 - N/2, resonance must occur for some lower value unless

N- N=v+ N (D-11)
2 2

The condition (D- 11) is equivalent to

D-6



N=2v+l , (D-12)

so that to avoid resonance and still have oscillation, N must be odd.

Also, on comparing equation (D-10) with (D-12), it is found that this can only

occur when m = 1/2, for which value

g(m) g() = N+ 1 2

Then, the natural frequency oscillation condition equation (D-9) becomes

K<(N+I)T ~. 2-N (D-13)

To avoid resonance due to the natural frequency for a larger value of m, the condition

K>2 - 2 (N+3)(N-1)

N 2N (D-14)

In summary, the only case in which there is some oscillation of the system but no
resonance occurs is when

/2(N +3) (N - 1 N+ 1) 2N N (D-15)

The case of N = 2 provides an example for which the explicit analytical results are
reasonably simple. On applying the matrix inverse equation (A-7) to equation (A-4) and
inverting the Laplace transforms obtained thereby, the following solutions are obtained:

N(1,t)=0, p(1,t) 8-K 2 e -Kt[1 - cos( F 8 - K 2 t+

where
8-K 2  

_ K 2 -4
sin4 Cos 4

N (,t)= 4 e-kt[ cos 8 K2 t]8 - K2

( t)= 18-Cos e- - tsin
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p(O,t) _ t) + 4 t 8- K2 sinJ18 - K t(8-K)2

2) /2~ JY t]Cos K8- t + t tsin -K t8 ;

p (- 1,t) = 1 - p(O,t) - p(1,t) (D-16)

The last equation comes from the conservation of probability

Xp(m,t)= ,

which follows identically from the equation (D-i) and the assumed initial conditions. ID

Figures D-l(a) through (e) give some calculated results from equation (D-16).

These results compare well with the calculations obtained using Code SR 2 for the same

input parameters.*

9

* Ringing will occur because of at least one value of m, namely m = 0, when K is of the order of IN or

less. To get ringing for all m values K < 22 is the necessary condition.
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APPENDIX E

THE CODE SR1.FOR

The diffusion equation derived by Narducci et al. (Ref. E. 1) for the atomic density

operator is a differential equation for the so-called quasi-probability function that

determines the density operator. The atomic density operator determines the time evolution
of any statistical property of the ensemble of two-level atoms satisfying the conditions of

superradiance as specified by Bonifacio and Lugiato (Refs. E.2 and E.3).

Specifically, this includes the expectation value of any operator that has a known
representation in terms of the fundamental basis vectors used by the authors, namely, the

Bloch states defined by Arrechi and Courtens and by Radcliffe (Refs. E.4 and E.5). It is

also a straightforward matter to express the results in terms of the Dicke states.

Because the underlying model assumes that the atomic system emits photons

"adiabatically", Bonifacio and Lugiato were able to derive a relation between the

expectation of the electromagnetic photon number operator and the expectation of the

atomic polarization operators. Thus, the atomic density operator will also give the time-

dependent spontaneous radiation statistics of the atomic system.
The quantity of interest is a function Q(e, t), which satisfies the differential

equation

kQ(,t) - sine - 2(+cose)

ata 2(1s  + os0

+ a 2 Cos0 Q(, t) (E- 1)02

The density operator WA(t) is defined by
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WA (t ) =f dO Q(O , t0 A(O) ,(E-2)•

0

where

2r 2(2r - m) ,2m

A(0) = 2 rCos s tin I r,m><n,ml (E-3)
m=0

The vectors I r,m > are Dicke states with quantum numbers r,m representing the

cooperation number and the internal energy of the atoms. The sum in the expression for A

is finite for any given value of r; therefore, the representation in terms of Dicke states is not
significantly more complicated numerically than the original representation in terms of
Bloch states.

We want to find an expression for

tr [R+ R- W',(t) J,(E-4)

where the raising and lowering operators R+ and R- satisfy

R+I r, p > = [(2r - p) (p + 1)]1/ 2 Ir, p + 1 > and

1/2

R-ir,p>= [(2r-p+ 1)p] Ir, p-1 > p=0, 1,..., 2r.

Since

tr(I r,p> <r,pl)= 1

and
R +R- I r,p > =(2r -p +1) p Ir,p >, r0, 1... 2r,

it follows that

[trR+RA(O)] = r {[cos2 (/ 2 )] } [(sin(0/2)]P (2r - p + 1) p
p.0

From formulas for the mean and variance, respectively of the binomial distribution

one has that

xV 
2rr2

p=o
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and

*2pr) x)2r - p X(2r-p)p=2r(2r-1)x(1-x)

p=o

Setting x = sin 2(0/2) and consequently 1 - x - cos 2 (0/2) one has that

tr [R R -A (0)]=2r (2r - 1) sin2 [0/2) [1 - sin 2 (e/2)] + 2rsin 2 (/2)

using the fact that (2r - p + 1)p = (2r - p)p + p.

This gives

tr [R+R - WA(t)] =2r(2r- 1) f' dO Q(0,t) sin 2 (0/2) cos2 (0/2)

0

+ 2r f dO Q(0,t) sin 2 (0/2)

0

with the definition Q(0,t) = (sine) p(0,t). Using 2 sin(0/2) cos(0/2) = sine,

tr [R+ R- WA (t)] = r (r- 1/2) f d0 Q(0 ,t) sin 2 0

0

K sin 2

+ 2r fd Q( ,t) sin (0 /2) (E-5)
0

This last expression is coded in SA1.FOR, which produces numerically the time

evolution of Q(O,t) for 0 < 0 < it and t > 0.

Narducci et al. (Ref. E. 1) have given the general solution of the diffusion equation

for Q(0,t) in terms of an arbitrary initial condition. They have also given a simplified

approximation for the case in which the initial value implies zero probability within some

neighborhood about the state of total population inversion initially. The point of total

population inversion on the Bloch sphere is a singular point of Q(0,t); thus, if the initial

condition does not exclude that point, the form of Q(0,t) is more complicated than it would

otherwise be.

The initial condition on Q(0,0), 0 < 0 < 21r in our calculations is given by
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22v

Q(0, 0) = e" ( 0 - 7 )2 / 2 , 0 < 0 >

S
for various choice of the standard deviation a. For a given positive integer n, the unit
circle is broken into n pieces by means of the points 01, ..., On with

j = -L + 21 - j= 1,...,n.nn 4.

This avoids having the singular point 0 = it as a member of the grid.

Differential equation (1) is replaced by a finite difference scheme. In the following,
ta represents an "old" time at which values of Q are presumed known; and tb represents a
"new" time at which values of Q are to be calculated: 9

Q( j, t b --QOj , ta)
tb-ta

[(sin j+ ~sin +1 )) (Q(Oj+l'tb) + Q ( j+l'ta))si 0j+l +2(1 + cos Oj0 2

iii+

(sin j + 2(1Q( tb) + Q( ' Ota)')
-~~n~+2(1 +cos0 P)J\ 2 j

0

I-Cos 0 j+ 1  Q(j+ ,tb) +Q(Oj+I'ta)

+ 2 2

S-cos0j Q(., tb) +Q(0j, ta
- 2 -____ ~ & Q0~~

2 2

1 -cos0jl Q(0 j-l ,tb) +Q(0j'l'ta)
+ 2 2 ] , n
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Considering Q(Oj, ta), j = 1, ..., n as known, values of Q(Oj, tb) are calculated.

* This process is repeated for

(ta, tb)= [(AT)* (k- 1), (A T) * (k)] ,k= 1,..., m

where M * AT is the final time.

This procedure is essentially a Crank-Nicholson scheme adapted to this singular

partial differential equation.
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PARTIAL PARAMETER LIST FOR SR1.FOR

N = number of pieces into which the interval [0, 2] is broken. Values from 2000

to 20,000 are appropriate. Multiple runs with different values of N should be

made as a check on accuracy.

D = time-step length

T= final time

R = population size

SIGMA = standard deviation for initial distribution

I'= number of time steps skipped before data is retained for graphing

Generally, the larger the sample size R is, the smaller T and D must be. Roughly, a

doubling of R implies that T and D should be cut in half.
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SRI SUPERRADIANCE CODE I

C PROGRAM SRI.FOR - 19 AUGUST 1986 - J. NEUBERGER
DOUBLE PREC:SION POC40000),RO(40000),SO(40000),Z(40000)
DOUBLE PREC:SION P(40000), R(40000),S(40000) ,U(40000)
DOUBLE PREC:SION WT(40OO0),L.A(1OO0),Y(40000),W(4oooo)

* DIMENSION AiC(1000),S.A(1000)
DOUBLE PREC:SION Pl,SIGMA,D,T,Rl,Xl,D2,Dl,Q,QO,Tl,X,XX,F
COMMION Pl,S:M
OPEN(1 ,FILE=' SRI .PLT' ,STATUS-'NEW')
OPEN(2,FILE='SR1.DAT' ,STATUS-'*NEW*)

C 'N' M~AY BE CHANGED TO 10000, 20000 OR 40000 AS A CHECK
*C 'N' IS THE NUMBER OF PIECES INTO WHICH THE CIRCLE-IS BROKEN

N=5O000

C THE FOLLOWING ARE TO BE INPUT EACH TIME THE CODE IS RUN:
C D-TIME STEP SIZE (..OOOO1DO IS A TYPICAL SIZE FOR N - 20000.DO)
C TF - FINAL TIME (TF - .0001D0 IS TYPICAL FOR N - 20000.DO)
C 11=NO. TIME STEPS SKIPPED BEFORE DATA IS RECORDED (Il - 1 IS TYPICAL)
C N - NUMBER OF ATOMS IN MODEL (FROM 1. TO 10.**6 OR MORE)

*C SIGMA IS THE STANDARD DEVIATION IN THE INITIAL GAUSSIAN DISTRIBUTION
WRITE(*,*) 'INPUT D,TF,I1,N,SIGMA
READ(*P*) D,T,I1,Rl,SIGMA
WRITE(2,80) D,T, Ii,R1 ,SIGMA

s0 F0RMAT(lX,' D-',D1O.3,' TF-',D1O.3,' l1=',13,' N-

C TO COMPARE WITH OTHER CODES IN THE SERIES, 'K' AND 'T2-STAR' ARE
C HERE CONSDIERED INFINITE; TIME SCALE IS TC-(1/GO)*(V/N)**.5

IS-ISK
ISS-Il
P1-3. 1415926335900
Xl - 2.DO*P1
Ml- INT(T/D+.l)

* D2in0/2.DO
Dlin2 .DO*P1/FLOAT(N)
Q-D2/D1** 2
Q0mD2/C2.DO*Dl)
N't11 N-1
NM12-N-2
DO 120 1-n1,N
T.L=Dl*FLOAT I )-Dl/2.DO
WT(I) = Rl*(CRl-.5DO)*DSIN(T1)**2 + 2.DO*DSIN(Tl/2.DO)**2)
SO I )-Q*(l.DO-DCOS(Tl+D1) )/2.D0

+QO*DSIN(T1+01)*(Rl+.5D0/(1.DO+DCOS(Tl+Dl)))
RO(lI)m-Q*(l.DO-DCOS(T1))

120 PO(I)=Q*(1.DO-DCOS(Tl-Dl))/2.DO
* -Q0*DSIN(Tl-Dl)*(Rl+.5D0/(l.DO+DCOS(Tl-Dl)))

DO 130 1a1,N
SM -SO( I
R(0I)i1 .DO-RO( I
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130 P(I)=-P0(I)
DO 1403 I1,N
U( I)-iJ.DO

140 W(I)aO.DO
U ( 1) ()
U(N-1)=S(N-1)
U(N)aq(N)
W(1)aS(N)
W(N-1)-P(N)
DO 21.3 I-2,NM2
R( I )-( )-SC I-1)*P( I)/RC 1)
UC I )uJCI)-U(1-1)*P(I)/R(I-1)

210 U(N)wU(N)-U(I-1)*W(I-1)/R(I-1)
U(N) aU(N)-W(N-1)*U(N-1)/R(N-1)
DO 230 1I-1,N

230 Z(I)-F(Dl*FLOAT(I)-Dl/2.DO)
DO 1000 M-1,Ml
IFCCCM-1)/11)*11.LT.M-1) GOTO 330
M9 aI 1
X-0 .00

DO 312 Iin1,N
IF (ABS(Z(I)).LT.0.1D-10) Z(I) a .DO

C )O a)O(+Z (I)
C WRITE(6,*) I,Z(I),WT(I)
312 X-X+ZCI)*WT(I)

WA(M9) .X*Pl/FLOAT(N)
C XX(-XX/FLOAT(N)
C WRITE(6,55) M9,XX,WA(M9)
55 FORl-AT(lX,I4,2Dl6.6)
- WRITECG,*) MI(), I-1,N)
330 CONTINUE

IF(M.EQ.Ml) GOTO 1000
YC1)=Z(1)+SO(1)*ZC2)+RO(1)*Z(1)+PO(1)*ZCN)
DO 350 I-2,NI1

350 Y(lI)-Z( I)+SO( I)*ZC I+1)+RO( I)*Z( I)+PO( I)*Z( I-1)
Y(N).Z(N)+SO(N)*Z(1)+RO(N)*Z(N)+P0(N)*Z(N-1)
DO 400 1=2,11
Y(I )-YCI)-YC I-1)*P( I)/R( I-1)

400 YCN)=Y(N)-YCI-1)*W(I-1)/R(I-1)
YCN)wYCN) -W(N-1)*Y(N-.)/R(N-1)
Z(N)=YCN)/U(N)
Z(N-1)a(Y(N-1)-U(N-1)*Z(N) )/RCN-1)
DO 450 1=2,N1.1

450 ZCN-I)C(YCN-I)-S(N-I)*ZCN-I+1)-U(N-I)*ZCN))/RCN-I)
1000 CONTINUE

Me = M1/11
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* Do 15 K-1,MS
ABC(K) a D*K*Il

15 SWAMK - WA.(K)
WRITE(1,14) M8

14 FORtATCS5)

12 FORMAT(2E1.5)

END
FUNCTION F(X)
COIlt10N P1,SIGMA
DOUBLE PRECISION A,SIGMA,P1,X,F
A a 3.9SDO*SIGMA

* IF (Pl1-A.LT.X.AND.X.LT.Pl+A) THEN
F - DXP(-(X-P1)**2/SIGMA**2)

ELSE
F - 0.00

END IF
RETURN

S END
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APPENDIX F

THE CODE SR2.FOR

This code deals with pair of integro-differential equations of Bonifacio and Lugiato

(Ref. F.l1):

p~m~t - 2. J ds e - K (t - s) - (t+s) /'2Ti

* {g(m) p(m,s) - g(m+1) p(m+l,s) + [g(m) + g(m+l)]N (m,s)

- (m+1W (m+l,s) - g(m+)N (m-l,s)},

41 ~ ~ (m,t) =-2K N(m,t) + 02g 2 s e-K(t -s) -(t+s) /2T*
0

{g(m+ 1) [ p(m+l1,S) +N (m+ 1,S) -N (m,s)]} (F-i1)

These equations are converted into a system of 4(2r + 1) equations by introducing two

families of unknowns:

U(m, t) = P(m, t) e Kt+u2

V(m, t) = (N(m, t) + 2 K N (m't)) e (2)

m =1, ... , 2r +1 .(F-2)
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The result is the system

P(m,t) = U(m,t)eit + T(2)

Q(m, t) = - 2K Q(m, t) - V(m, t) e T2t +A,2T

U(m,t) =-e e t,2) [g(M)P(m,t) -g(m + l) P(m+ l,t)]

- g(m +1) Q(m +1, t) + [g(m +)+ g(m)] Q(m, t)

- g (m) Q(m -1, t)

V (m, t) =e - Kt e(T 2 ) g(m +1)

[P(m + 1, t) + Q(m + 1, t) - Q(m, t)],

m 1..2r +1 (F-3)

This system is written compactly as

'(t) = A(t) Y(t) , t t0

where (P(l, t)

P(2r 1, lt))J

(L:, ))
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and A(t) is the appropriate matrix to make equation (F-4) equivalent to equation (F-3).

* A Runga-Kutta scheme is used for the calculation

Y = Y(ta) + {A(ta) Y(ta) + A(t%) [Y(ta) + 8A(t t , (F-5)

where Y(ta), is the value of Y at an "old" time ta and Y(tb) is the value of Y at the

* corresponding "new" time tb.

Three different sets of initial values could be introduced into the calculation.

(1) P(m) = (1 PC)N-m+1 pm-(Nl)

Q(m) = e- 1 a- 1/(m-1)!

U(m) = 0

V(m) = 0 m = 1, 2, ..., N

(2) P(m) = g /[g + (m - mo)2]

Q(m) = 0 m = 1, 2, ... , N for same mo

U(m) = 0

V(m) = 0

(3) P(m) = 0 For m= 1, ..., 2r + 1 except P(ml) = 1 for some M1

N(m) = 0

U(m) = 0 m= 1, ..., 2r + 1

V(m) = 0

An annotated listing of SR2.FOR is given, together with some graphic output.
* What is plotted is I Q(m,t) as a function of t. Repeated runs were made for various values

of h (time-step size): h = 10-17, 10-16, 2 * 10-16, 10-15. Results for these runs show

excellent agreement in that output is insensitive to the size of H in this range.

It should be noticed that although the main qualitative features of Y" Q(m,t) are

reasonable, the value of I Q(m,t) turns slightly negative for certain values of t. This is

physically wrong and is due to a truncation in Bonifacio's model. A closed form analytical

solution was obtained for the case N = 2 and is described in Appendix D.
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PARTIAL LIST OF PARAMETERS FOR SR2.FOR

N = sample size

XK1 = constant K

XK2 = 1/2T 2

H = time step size 9

GOP= g6

PC = (p), probability initial binomial distribution

GM = mean of corresponding Poisson distribution

i3 = number of time steps computed before data is retained for purpose of

graphing

V = physical volume

TF)
Generally, ( should be in the range 200 to 500 for purposes of graphing. Data set

"1" contains data for graphing purposes.

F-6



SR2 SUPERRADIANCE CODE 2

C PROGRAM SR2.FZR - 19 AUGUST 1986 - J. NEUBERGER
DOUBLE PRECISION P(201),Q(201),R(201),S(201),G(201)
DOUBLE PRECISION P0(201),QD(201),RD(21),SD(201)
DOUBLE PRECISION XK1,XK2,TF,TO,GOP,V,H,T,TPH,X,Y,PC,GM

* DOUBLE PRECISION Pl(201),Q1(201),Rl(201),Sl(2O1)
DOUBLE PRECISION P2(201),Q2(201),R2(201),S2(201)
DOUBLE PRECISION XI,X2,X3,X4,XS,X6
DIMENSION ABC(1000) ,SWA(1000)
COMON N.XK1,XK2,G
OPEN(1,F:LE='SR2.PLT" ,STATUS="NE')

* OPEN(2,F:LE-'SR2.DAT" ,STATUS-"NEW')
OPEN(3,F:LE- "SR2A.DAT' ,STATUS="NEW")
OPEN(4,F: LE= SR2B.DAT' ,STATUS"" NEW")
WRITE(6,T) 'INPUT TF,H,IS,N,XK1,XK2,M "

C TF - FINAL TIME (TYPICAL VALUE 3.DO)
C H a LENGTH OF 7IME STEP (TYPICAL VALUE 2.D-4)
C IS a NO. OF TIM*E STEPS SKIPPED (TYPICAL VALUE 50)

0 C N = NUMBER OF ATOMS (TYPICAL VALUE 100 - IF>200,INCREASE DIM)
C XKI - "K' (TYPICAL VALUE 1.5D0)
C XK2 a 1/T2-STAR (TYPICAL VALUE 1.0-18)
C Ml a EXCEPTIONAL POINT FOR DELTA DISTRIBUTION

READ(5,*) TF,H,IS,N,XK1,XK2,Ml
WRITE(2,80) TF,H,IS,N,XK1,XK2,M1

410s FORMAT(lX,'TFa',DIO.3,' H a t , D 1 0 . 3 , "  IS"",I3,

" N-',:4,' XK1a',D10.3,' XK2=',D10.3," Ml',13)
C GOP = 1.17D0
C ABOVE IS A SAMPLE VALUE FOR GOP
C V = 4.4D-24
C ABOVE IS A SAMPLE VALUE FOR THE VOLUME V

TO a 0.D0
0 C PC - PROBABILITY OF POISSON DISTRIBUTION

PC =.1D-4
C GM a CONSTANT 'GAMMA'

GM * -DBLE(N)*DLOG(PC)
NP1 a N+I

C MC = TOTAL NUMBER OF TIME STEPS
MC - INT(SNGL(TF/H) + .1)

C MB - NUMBER OF DATA POINTS
Me a MC/IS
WRITE(1,94) MS

94 FORMAT(15)
C INTRODUCTION OF G-CONSTANTS

DO 1 M-1,NP1
1 G(M) - DBLE((M-1)*(N-M+2))*4.DO/DBLE(N)
C THE FOLLOWING INITIALIZES P,Q,R,S FOR A POISSON DISTRItUTION
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P~i) a (.P)A
Q(41) =O.D-4

C Q(1) DECXP(-GM)
R(l) aO.DO
S(1) -O.Do
DO 2 M-2,.SP
P(M) = P(4-1)*D9LE(N-M+2)*PC/(DBLECM-1)*(l.-PC))
Q(M) - .-

C Q(M) a Q(N-1)*GM/DBLE(M-1)
R(M) - 0.D0

2 SCM) - O.Do
C END OF POISSON DISTRIBUTION INITIALIZATION
C THE FOLLOW~ING :NITIALIZES P,0,R,S FOR A LORENZIAN DISTRIBUTION
C GO a GO/2.DO
C MO-i1
C DO 2 M-I,NPI
C P(M) = GO**2/CGO**2+(FLOAT(M) - FLOAT(MO))**2)
C Q(M) = 0.00
C RCM) - 0.)O
C2 SCM) = O.Do
C END OF LORENZIiA4 DISTRIBUTION INITIALIZATION
C THE FOLLOWING :NITIALIZES P,Q,R,S FOR A DELTA DISTRIBUTION
C DO 2 Mal,.NP1
C P(M) a0..'0
C 0(M) O .Do
C RCM) O .DO
C2 S(M) aO.Do
C P(Ml) I-DO
C END OF DELTA OrSTRISUTZON ZNZTZALZZATZO.
C START OF MAIN ..-OOP

DO 1000 J=I,MC
T=DBLEC J-IJ*H
CALL AM(T,P,0,RIIS,PD,QD,RD,SD)
TPH a T+H
DO 3 Mini,NPI
Pl(M) - P(M) + H*PD(M)
01(M) - 0(M) + 14*00(M)
RI(M - RCM) + H*RD(M)

3 SIM a S(M) + H*SD(M)
CALL AM(TPH,P1 ,Ql.,RlSl.,P202,R2,S2)
DO 4 Minl,NP1
P(M) a P(M) + (H/2.DO)*(P2(M) + P0(M))
Q(M) - 0(M) + (H/2.DO)*(Q2(M) + QD(M))
R(M) = R(M) + C1/2.DO)*(R2(M) + RD(M))

4 5(M) - S(M) + (H/2.DO)*(S2(M) + 50(M)
IFCCJ/IS)*IS.EO.J) THEN
Xl a O.DO
X2 a .D

X3 a OD
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*X4 a 0DO
DO 5 M-1.N+*
Xl a Xl -DBLE(M)*P(M)
X2 a X2 + DBLE(M**2)*P(M)
X3 aX3 -DBLE(M)*Q(M)
X4 a X4 + Q(M)

5 CONTINUE
*X5 aX*2- X2

X6 - X3 - X4*Xl
WRITEC3,97) T+H,Xl,X2,X5
WRITE(4,37) T+H,X3,X4,X6

97 FORMAT(lX,40,12.4)
TREAL a SNGL(T+H)

* XREAL a SNGL(X4)
WRITE(1.,95) TREAL,XREAL

95 FORMAT(2E15.6)
C WRITE(8,98) (P(M), Mu1,NP1)
C WRITE(8,98) (Q(M), Min1,NPl)
C WRITE(9,98) (R(M), M-1,NPl)
C WRITE(8,98) (S(M), M-1,NPI)

* NDIF
C DO 11 Minl,NP1
Cil IF(P(M).LT.O.DO) P(M)=0.DO
C X-0.DO
C DO 12 M-1,NP1
C12 X- X + P(M)
C DO 13 M-1,NP1
C13 P(M) a P(M)/X
1000 CONTINUE
98 FOR1MAT(lX,10Dl3.4)

STOP
EDD
SUBROUTINE AJ1(T,P,Q,R,S,PD,QD,RD,SD)

* DOUBLE PRECISION P(1),Q(l),R(l),S(l)
DOUBLE PRECISION G(1)qPD(l),QD(l),RD(l),SD(l)
DOUBLE PRECISION T,C1,C2,XKl,XK2
COMtON N,XK1,XK2,G
Cl a DEXP(XK1*T)
C2 a OEXP(-XK2*T)
P0(1 - C2*R(1)/Cl
OlD(l) - -2.DO*XKI*Q(l) + C2*S(1)/Cl

SD(1) a Cl*C2*G(2)*(P(2) + Q(2) -0()
DO 1 M-2,N
PD(M) a C2*R(M)/Cl

* QD(M) a -2.DO*XK1*Q(M) + C2*S(M)/Cl
RD(M) a -Cl*C2*(G(M)*P(M) - G(M+1)*P(M+l)

-G(M+1)*Q(M+l) + (G(H+l)+G(M))*Q(M) - G(M)*Q(M-1))
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SD(M) a C-±YC2*G(M+1)*(P(H+1) + Q(M+1) - Q(M))
PO(N+1) a :2*R(N4+1)/Cl
QD(N+2.) m -2.0O*XK1*Q(N+I.) + C2*S(N+1)/Cl
RD(N+l) = -Cl*C2*(GCN+2.)*P(N+2.) + G(N+1)*Q(N+1) -G(N+1)*Q(N))

SD(N+1) a 3.DO
RErURN
END
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* CODES SR3.FOR AND SR4.FOR
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APPENDIX G

CODES SR3.FOR AND SR4.FOR

Both codes SR3 and SR4 deal with the semiclassical calculation of the superradiant

emission. The radiation intensity is obtained from Ref. G. 1..
I(t) = 2g j (t) e (G

Code SR3 calculates p(t) from the damped pendulum equation

d +9 + ) _.L - - e-t-T sin (p(t)= 0 (G-2)dte 22 dtT
t>0

which takes into account both cooperative emission and stimulated emission and thus

produces ringing effects.

Code SR4 calculates q((t) from the overdamped pendulum equation (12.2, Ref.

G.2)

= I e-tr; sin (p(t) (G-3)
dt T

t_>0

and calculates a pure superradiant emission.

Both codes incorporate the initial conditions

p(0) = ( 2 dq (0) = 0 (G-4)

ONJ ' dt

to take into account the quantum noise polarization which initiates the pendulum motion.

A conventional second-order Runga-Kutta method was used in both codes.

Annotated listings follow.
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PARTIAL LIST OF PARAMETERS FOR SR3.FOR

TO = starting time

H = time-step length

TF = final time

F = population size

XK = constant 'K'

T2S = go

V = physical volume

IS = number of time-steps to be skipped before data is retained for graphing

Data set "1' contains data for graphing purposes

PARTIAL LIST OF PARAMETERS FOR SR4.FOR

T= final time

H = time-step length

R = sample size

Y = starting value [value of (p(o)]

GO= go

V = physical volume

IS = number of time steps skipped before calculated data is printed out
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* SR3 SUPERRADIANCE CODE 3

-PROGRAM SR3.Or(R - 19 AUGUST 1986 - J. NEUBERGER
DOUBLE PRECISION DM1 ,Dt2,DN1,DN2 ,X.M1,XN1 ,T,TO ,R,H,TF,XM,XN
DOUBLE PRECISION G,V,T2S,XK1,TPH,XK2
COMMOCN R,.XK1,XK2,T2S,V,GO
OPEN(1 ,Fl..-E-'SR3.PLT' ,STATUS='NEW')

* OPEN(2,F..Es'SR3.DAT' ,STATUS-'NE-W')
C H a LENGTH OF -IME INTERVAL (TYPICAL VALUE 1.0-15)
C TF a FINAL TItNE (TYPICAL VALUE 5.D-11)
C IS a NO. TIME STEPS SKIPPED BEFORE OUTPUT (TYPICAL VALUE 100)
C XK1 - CONSTANT 'K' (TYPICAL VALUE 1.5011)
C XK2 a 1/TZ-STAA (TYPICAL VALUE 1.0-6)
C N -NUMBER OF ATOMS (TYPICAL VALUE 100.00)

WRITEC6,*) 'INPUT H,TF,IS,XK1,XK2,N
RE-AD(5,*) H,TF,IS,XK1,XK2,R
WRITE(2,80) H,TF,IS,XK1,XK2,R

80 FORtAT(lX,'H-1,Dl0.3,' TF=',010.3,' IS-',I3,
I XK1-',D1O.3,' XK2=',D10.3, I Na' ,Dl0.3)

TO a 0.00
*C NEXT TWO LINES GIVE INITIAL VALUES OF DERIVATIVE AND UNKNOWN*

XN a 0.00
Xa - SQRT(2.DO/R)

C CONSTANT _____

GO *1.1700/DSQRT(2.DO)
T2S a1.DO/XK2

C V VOLL.IE
* V = 4.4D-24

C MC *TOTAL NUMBSER OF TIME STEPS
MC a INT(SNGL(TF/H) + .1)

C MS NUMIBER OF POINTS TO BE PLOTTED
MS - MC/IS
WRITE(1,94) MS

94 FORMAT(I5)
*C START OF MAIN LOOP

DO 1000 J-1,MC
TODBLE( J)*H
CALL AII(T,X1,XN,DM1,DNI)
Xm1 a xII + H*OM1
XN1 - XN + H*DN1

*C IF((J/IS)*tS.EQ.J) WRITE(6,97) T,XM1,XN41
TPH a T + H
CALL A1(TPH,XH1 ,XN1 ,0M2,DN2)
)Cj 0 XM + (1/2.DO)*(0M1 + DM2)

aN *4X + (H/2.DO)*(DN1 + DN2)
C WRITE(6,*) XM,XN,DM1 ,DN1 ,DM2,DN2

TREAL a SNGL(T)
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C REMOVE NEXT COMMIENT IF OUTPUT PRINTOUT IS WANTED
C IF((J/:S)*Is.EQ.J) WRITE(6,97) T,XM,XN
1000 CONTIMJE
96 FORPAT,2EI5.6)
97 FORMATk-lX,3D18.10)

STOP
END
SUBROUTINE AM(T,XM,XN,OM,DN)
DOUBLE PRECISION XM,XN,DM,DN,R,XK1,XK2,T2S,V,GO,T
COMMtON R,XKI,XK2,T2S,VGO
om - X
ON - --XKI + l.DO/T2S)*XN + DEXP(-T/T2S)*DSIN(XM)
RETURN
END
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* SR4 SUPERRALJIANCE CODE 4

C PROGRAM SR4.FCR - 19 AUGUST 1986 - J. NEUBERGER
DOUBLE PkECISION T,R,H,Y,GO ,V,XK1 ,C,F,XK2
COMMtON CIXK2

* OPEN(2.,F:LE-'SR4.PLT' ,STATUS--NEW')
OPEN(2,F!LEU'5R4.DAT' ,STATUS.'NEW')

C T a FINAL TIn~ (TYPICAL VALUE 10.)
C N a NUMBER OF ATOMS IS THE (TYPICAL VALUE 100.DO)
C H aLENGTH OF TIME STEP (TYPICAL VALUE 1.0-4)
C IS -NO. TIME STEPS SKIPPED BEFORE OUTPUT (TYPICAL VALUE 500)
C XK2. a CONSTANT 'K' (TYPICAL VALUE 10.)

*C XK2 = 1/T2-STjAR (TYPICAL VALUE 5.D-7)
WRITE(,m') ' INPUT TN,H,IS,XK1,XK2
READ(5,*) T,R,H,IS,XK1,XK2
WRITE(2,90) T,R,H,IS,XK1,XK2

80 FORMAT(lX,'Tu',DIO.3,' N-',DIO.3,' Hul,DlO.3,
-IS-'*,13,' XK1-',Dl0.3,' XK2=',Dl0.3)

C Y a INITIAL V-ALUE OF SOLUTION - TIED TO 'N' BELOW
* Y = 1.00/DSQRT(R)

C GO aCONSTANT_____
GO l .l.700/DSQRT(2.DO)
C I .DO/XK.

C MC - TOTAL NUMBER OF TIME STEPS
MC - INT(T/H + .1DO) + I

C MS a NUMBER OF DATA POINTS SET TO PLOT ROUTINE
Me a MC'Is
WRITE(1,97) MS

97 FORMAT(1!5)
DO 1000 M-1,MC
T a H*DBLE(M-1)
Y = Y + Z5DO*H*(F(Y,T) + F(Y + H*F(Y,T),T+H))

*C IF(((M-1)/IS)*IS.EQ.M-1) WRITE(6,99) T,Y
TREAL a SNGL(T)
YREAL a SNOL((R/4.DO)*F(Y,T)**2*EXP(T*XK2))
IF(((M-1)/IS)*IS.EQ.M-1) WRITE(1,98) TREAL,YREAL

98 FORMAT(2E15.6)
1000 CONTINUE
99 FORMAT(lX,2015.6)

* STOP
END
FUNCTION F(X,T)
DOUBLE PRECISION X,C,F,T,XK2
COMMlON C,XK2
F - C*DE)P(-T*XK2)*DSIN(X)
RETURN
END
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APPENDIX H

* EQUIVALENCE OF THE SEMICLASSICAL AND
THE DRESSED STATE APPROACHES TO THE

TREATMENT AND INTERACTION OF
ATOMIC AND NUCLEAR SYSTEMS

H. 1 INTRODUCTION

In this appendix it is shown that for electromagnetic (EM) fields with a large

number of photons, the treatment of the radiation either as a classical oscillating field or in

the second quantized form ("dressed state") is completely equivalent. To simplify the

algebra, we treat the interaction of EM radiation with a pure two-level system (TLS). We

show that one obtains identical sets of dynamic equations in either of the two approaches.

We shall use density matrix equations in both pictures. For concreteness and simplicity we

shall consider the two-level system to be atomic and the interaction of the EM radiation with

the electrons. The extension to the nuclear case is straightforward.

H. 2 THE SEMICLASSICAL APPROACH

The electric field vector is written as

E(t) = E E0 (ei f + e-i~) , (H- 1)

where ' denotes the polarization vector, E0 the peak amplitude and (o the angular frequency

(rad/s) of the radiation field. The interaction of an electron with this radiation field is

represented by the Hamiltonian

V(t) = - E = - p. Eo(ei ° t + e- i~t) (H-2)

in the electric dipole approximation (El transitions).

Let -r two-level system be described by states 11> and 12> that have energies hco 1

and hwo2 and are connected by a dipole transition (p.12 = P.21, and plj I = }-22 = 0). If Ho

denotes the atomic Hamiltonian in the absence of the field, then we have
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Ho I > = I I >

and

(H-3)

Ho12 > =h0212>

The density matrix operator p satisfies the differential equation

dp i
- [Ho + V(t), p] (H-4)

Taking matrix elements of equation H-4 between states I1> and 12> and, defining Pij =

<i Ip b>, we obtain the following equation:

dp1  (H--5a)
dt h V12 P2 1 

+  P12V21

d022  _ ii=- 22 V2 1 P12 + " P2 1 VI 2  (H-5b)

dP2= - i O.2.2 (V12 P22 P11V12) (H-5c)

d iI - i-2521
P12 = - 2P(V 2 1 P1 1 P2 2 V2 1 ) (H-5d)

(012 = (0 1 - 02 = 0)21 (H-5e)

V12 = V2 1 -- A2 Eo(eiofl + eio)'

At this stage we make the rotating wave approximation (RWA). This amounts to pulling

out the fast time variations in Pij as shown below: S

P1 1  a ,1 1  P 2 2 - 022

= = e-i c ft

P 12  e+it(71 2 (t) and P2 1  e a 12 (t) (H-6)
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This approximation is valid if

C)+o 2 1 >> CO -C 21  (H-7)

(or c >> col)

Substituting (H-6) into (H-5) we get

LO" +-L- E0 ( ic a21  -io
dt t - 12 Eo(eioX + e

i E.(e i +t-iCOt)Gle+iCat (H-8a)-h 9~21E + e a1

da 2 2  i i cotdt - + '" 921 Eo (e + eiot a1

i 8box
- - p21 E o (e + e'-c a 2 1 e (H-Sb)

e e+ico (.- 12 +icoa 2)= -icol 2 al 2 e+iaX

+ " L.12 E o  W 1+e -( )
S2 1  (H-Sc)

e-i*o (- 2 - io21a21 e-iox

+ 9-l12 Eo (eio + e-o) (all - C;,22) •(H-Sd)

Finally, dropping antiresonant terms like e±i2(ot in (H-8) we obtain the following
semiclassical optical Bloch equations, where 0 = 2.tl2Eo is defined as the Rabi frequency.
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d -+ iQ r21 - + a o21 (H-9a)

da 2 2  1 i a * i -*a
dt 2 2 12 (H-9b)

d 1
d"t -12  2i = Q (C22 -a 11) (H-9c)

d = -@ I +-* (,22-o1) (H-9d)

where

8=0)21-o

H.3 THE SECOND QUANTIZATION APPROACH "THE DRESSED-

STATE METHOD"

Here the atom and the radiation field are treated together as a single system. The

interaction between them is assumed to be absent for times t < 0. At time t = 0 an

interaction is turned on. We would like to investigate the evolution of a two-level system

for times t > 0.

Let HA and HR denote the unperturbed atomic and the field Hamiltonians and V the

interaction between them. Since atom + radiation is a closed system the total Hamiltonians

H=HO+V=HA+HR+V (H- 10)

is time-independent. Let us assume a single mode field for simplicity. The eigenstates of

Ho are composite (dressed) states of atomic and field eigenstates. So, ignoring the 1/2 h o

term

Holi,n>=(HA+HR) l i,n>=!(o )i +nc o) Ii,n> (H-11)

The manifold of dressed states formed by a two-level atom and the single-mode radiation

field ;s shown below.
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12> 12. n~l >-

* a II.n+221

-S ' 12,n >
I> II.n+1>

0= ( 0 1% m 12, -1> No

1In >

10)12,n -2 > . In

12.n-3>

In -2>

Note that on resonance, 8 =0 and states I l,n> and 2,n-l> become degenerate. The

interaction via the electric dipole transitions then splits these into two mixed states. In the

electric dipole approximation, the interaction V can be written as

VV1E F A lic (a + )  9= (H- 12)

where a and a+ are, respectively, the annihilation and creation operators for the field mode

and Vn is the normalization volume. Because of this interaction, the near-degenerate pairs

{ ll,n>, 12,n-1>}, { ll,n-l>, 12,n-2>} become perturbed and evolve into two mixed

states.

NOTE: ll,n> not only has allowed transitions to 12,n-1) but also to 12,n+l).

However, as long as 1o12 + co I << co21 + ) (Eq. H-7), such antiresonant

transitions can be ignored.

The Hamiltonian matrix for the 2 x 2 pair is then written as follows:

SHI 1,n > = (w 1+ n) 11, n > - g2, m o 12, n-l > (H-13a)

H 12, n-1 > =t [o2 + (n-1)(o] 12, n-l> -g2l 2m"f-' 11, n > (H-1l3b)

Diagonalization of the above Hamiltonian gives rise to two mixed eigenstates Ian> and

In3>. These are expressed as
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E = 1 [l[o, +ito2 + (2n-1) co]+I 4 2 .2=hcEa T T. • 9p212xnt

14
= E0 + T--A (H- 14a)

E 1[(o +too2 + (2n+1)ficol -! 82+4 2 2mn~i

1
= Eo  A. (H-14b)

l,n = 21gI2F 2, T o I ,n >

[(8+ A)2 + 412 2mnfi(0]

+ 8+A 1 2, n-1 > (H-15a)

[(8 + A) 2 + 41,2 2xnfi0o] 
2

f oa,n> 1 !2, n-I> as 912 - * 0

lo,n > = + A I I ,n >

[(8 + A)2 + 4", 2nnt~o]2  0

+ n 21 Ea 2, n-I > (H-15b)

2

and
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{1,n >-- 1, n > Elp -+ E0- (H-15c)

Such diagonalizations have to be performed for each pair [ Ii,n>, 12,n - 1>)]. However,

for n >> 1 all of the dressed state pairs behave the same way.

The time evolution of the system is then described by

-i E tr - E t/IrI ()> = aa (o) e a I cx, n > + a P (o) e I[,n> . (H- 15 d)

If one uses this solution to calculate the time evolution of the probability of the

population in the upper state, one obtains exactly the same behavior as given by the

solutions of (H-9). This is shown in the next section.

H.4 COMPARISON OF SEMICLASSICAL AND "DRESSED STATE"

SOLUTIONS

The Rabi solution of equations (H-9a) through (H-9d) for a two-level system

coupled to a monochromatic field will be obtained with the initial conditions

a I (t = 0) = 1 022 (t = 0) - 0

CY12 (t = 0) = 1921 (t = 0) = 0 .

It can be shown that the four equations (H-9a) through (H-9d) are completely

equivalent to the following two "amplitude" equations:

d- C2 1=iA[ C1] ,

where

A= 1  (H- 16)

and the eigenvalues of A are given by

2 i2

The density matrix elements are related to the complex amplitudes C1 and C2
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11 C*C 1 , 022=C2C 2

12=C1 2 ' aI =C2  C1

With the initial conditions

C1 (t = 0) = 1 C2 (t = O) = O

the solution of equations H- 16 is given by

e I +LC 2()_ -L QL X -e1 0

or

C l.._ X e ik+t -  , e i - t

X- )L+

C2 (t) = 7(eixt - e )

so that

2 ) +_ _ 2X-_Lo_[)_Xt

P11(t) Cl(t) + - 2 (X - 2 o+X - ) 2  ()L_- X.)

1 12 1 ! 2

P22(t) = C2(t) 1= cos - X)t] (H- 17)

- X) 2  (X- ) 2

Note that pII(t) + p22(t) = 1 for all times.

In the dressed state picture, the states II,n> and 12, n-l> mix to give rise to two "dressed"

states k,n> and 3> whose energies and wave functions are given by equations (H-14) and

(H- 15), respectively.
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In cgs units, the intensity is given by I = (c/2n) Eo 2 while in second quantization

picture I = niomc. These two equations together imply that Eo = 12-7mnw and, therefore

tIK = 29.21E. = 2g21 .5nho

Using the definition So = wco2---o, we get

Ea~ ~ = t)+nio+110 +~ IT qe;+0 (H- 18a)

='h ((o1 + no)) --nk-

E P = i ((0 +  nco) -'(H-18b)

Using the definition of Q, A = hAo and X+ the eigenstate equations H- 15a and

H-15b can be rewritten as

aoi, n>=- - II, n>- +.' 12, n-1> (H-19a)

0, n %-+ n>+ k_- 12, n-1 > (H- 19b)

The time-dependent solution to the problem is then given by
e-iE tibt e-iE t/l

N(t) = aa(O)ea I a, n > + a 0(0) i 3,n> , (H-20)

where aot(O) and ap(O) are determined by initial conditions or equation (H-15d).

At time t = 0, before the interaction is turned on, N(O) = Il,n>. This implies,
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cc+ a(°) = ( )(H-21)

Then, using equations (H-17) through (H-21), (t) can be written as

-(t)- + e a A a,n>- - e n >(k, - .+) (-_ +

(o + no)) t / .- ix t A }
e + e + ll,n>- 2, n-1>(O,.- X. ) (k,_ x.+ \ x - ?L+

-- I ,n>+ 12, n-1 >

) +)- +)

Rearranging,

f, eiXt i

i (co0+ no)) t eL e
e + I 1,n>

+ (e "- e I 2,n-i> (H-22)

The phase factor ei (wl + ncO) t can be ignored as it makes no contribution to any observable
quantities. We immediately see, by writing

W(t) = C1 (t) Ii,n> + C2 (t) 12,n-i> (H-23)

that the coefficients CI(t) and C2 (t) are exactly the ones calculated before. So the two

methods give identical solutions.

H-12
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APPENDIX I

ENHANCEMENT OF y-EMISSION USING LONG-

WAVELENGTH RADIATION

Consider a three-state system as shown schematically in Fig. I-1 with a ground

state Ib> an isomeric state 1a> and an upper level Ic>. Initially the system is in state la>,

an isomeric level with a lifetime on the order of 107 s (ya = 10-7 s) 104 eV above the ground

state lb>. The level 1c> can be excited with a single photon or multiple photons. The

energy separation between the isomeric level and the ground level is Eab = 104 keV and

between the upper level and the isomeric level is Eca. The decay rates of the upper and

isomeric levels are yc and ya, respectively, with yc >> ya.

lc>

la>

lb> - Q G

Figure I-1. Electromagnetic excitation of a three-level system showing
photon absorption followed by emission (process 1) and

emission followed by photon absorption (process 2)

We will assume that only the isomeric level is initially excited and calculate the

probability as a function of the beam intensity I that a low-energy photon with energy hw >

Eca induces the transitions ( Ia> 6 Ic> - Ib>, thus depopulating the isomeric level.
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For convenience, we shall work within the second quanitized formalism for treating

the emission and absorption. The decay rates will be introduced phenomenologically.

Both processes 1 and 2 depicted in Fig. I-1 will be considered. Process 2 is more

prominent close to resonance.

The initial, final, and intermediate states for processes 1 and 2 are given by:

la> = 1a; n, 0> (initial state)

Ib> = Ib; n-i, 1> (final state)

Ic1> = 1c; n, 1> N (intermediate states)

Ic2> = Ic; n-i, 0>

where n is the number of photons in the beam and one photon is absorbed from the beam.

The energies of these states divided by h are:

0)a = )a' + ro

) b = ) b' + (n-I 1) + 0(o'-1

C =O O0' + nO) 4-o'

03c2 Oc' + " (n- 1)(o

with (0a', COb', Oc' the energies of the nuclear or atomic levels divided by h, respectively,

and hco and hco' the incoming and out-going photon energies, respectively.

The dynamics of the density matrix p is given by:

dp/dt = -i[H0 + V, p] + Fp , (1-2)

where Ho is the non-interactive part of the Hamiltonian, V is the interaction Hamiltonian

and r is the decay matrix. In the above expression 11 has been set equal to 1. We will

focus on process 2 and assume the rotating wave approximation. The approximate error in

this assumption

()c - o)a -0')/(Qc - C)a + W2) (-2a)

is a function of the detuning.

The rate equations for the diagonal matrix elements from equation (1-2) are:
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d/dtpaa = -i V., P~ja + 'Pac1 Vci a -YaPaa -i[Vac2 Pc2a - Pac2 V c2a] (I-3a)

*d/dtpc 1lc -' [V 1 Pac - Pcia Vacl] - i [Vc1l, Pbcl -Pclb VbcI] - YcPclcl (I-3b)

dldtPbb = ["'Vbcl Pclb - Pbel Vclb] - ' [Vbc2Pc2b -Pbc 2 Vc2b] (I- 3c)

+ YaPaa + Yc (Pcic + Pc2c2)

d/dtPc= -i [Yc2aPac2 - Pc2aVac2] - i [xrc~bPbc2 - Pc2bVbc2] - YcPc2c2 (1-3d)

and for the off-diagonal matrix elements are:

*d/dtpc= (1/2 ) (y +y)pact - iacl Pacl i(VaciPclcl + Vac2 Pc2c1d (1-3e)

+ i (Paavacl + PabVbCl)-

dldtpac2 =-(1/2) (Y + -Q Pac2 - i j c~Pa2 - i (V aci Pclc2 + Vac2Pc2c2) (1-3f)

+ ' Pa~c + PabVbc2)

dldtpab =-(1/2) yapab - i wabpab - i (VacIPclb + Vac2Pc 2b) (I-3g)

+ i(Pac1 Vc1 b + Pac2Vc2b)

d/dtPclc2 = - cPclc2 - )clc2 Pclc2 (V (VaPa 2 + VclbPbc2) (1-3h)

+ i(PclaVac2 + PclbVbc2)

dldtPClb =-(1/2) (YC Pc~b - ) ClbPclb - ' (V 1la~a + VclbPbb) (I-3i)

+ 1 (Pclcl~c1b + Pclc 2 Vc 2 b)

dldtpc2 b =-(1/2) (y Pc2b - (0 c2bPc2b - i (V 2aPa + Vc2bPbb) (I-3j)

+ ' (Pc2cl Vclb + Pc=cVc2b)

The solution of these 10 (complex) (or 16 real) equations will give Paa' Pbb, Pcc for

arbitrary intensities and detunings. This solution is equivalent to the dressed state result.

Near resonance, 0O-C' - c0a' and the absorption + emission pathway is much

stronger than the emission + emission pathway. Thus, matrix elements containing c I can

41
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be neglected. The problem then reduces to a three-level system (a, C2, b). Equations

relevent to this case are:

dPaa/dt = - YaPaa i[Vac2 a - Pac2 Vc2 a], (I-4a)

dPbb/dt = YaPaa + YcPc2c 2 - i [cPc2 b - Pbc2 Vc2 b], (I-4b)

dPc2c2 /dt = - YcPc 2c2 - i [Vc2aPac2 Pc2 aVac2] (I-4c)

- i [Vc2 bPbc2 - Pc2bVbc2]

dPac2/dt [- 1/2 ( + -"iac 2] Pac2 - iVac2 (Pc2c2 - Paa + i PabVbc2 ,  (I-4d)

dPab/dt = [- 1/2 ya - i Cab] Pab - i Vac2Pc 2b + i Pac2 Vc2 b' (I-4e)

dPc2b/dt = [- 1/2 Yc " i'0c2b Pc2b - i Vc2b (Pbb - Pc2c2 ) - i Vc2aPab (1-4f)

In the above equations the coherence between a -- c2 and c2 -* b steps is retained. If we

wish to neglect the c -+ b coherence, set Pbc2 = Pc2b = 0 = Pab. These equations then

reduce to two-level equations

dpa/dt = YaPaa - i Vac2Pc2a - Pac2Vc2a], (I-5a)

dpc 2 /dt = - ycPc2 "i [V2aPac2 - Pc2a V 2], (I-5b)

dp ac2/dt= [- 1/2 (Ya + Yd " o)] P - i V 2 (Pt 2c2 - Paa)' (I-5c)

dPbb/dt = YaPaa + YTpc2c 2  (I-5d)

The matrix elements Vif used in equations (1-3) through (1-5) have to be calculated

according to the multipolarity of the transition. We show how this is done for an electric

dipole transition. The result has to be appropriately generalized for other transitions. The

interaction Hamiltonian for an El transition is given by

V V  a7t + (a'+a'+). (1-6)

From this we calculate
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Vaci = <a;n,O I V I c;n;l> = - (1-7a)a Vn VCla

Vc = <a;n;OI V Ic;n-l,0> = - 'sc 27_on = V (I-7b)

Vb = 1 - V (I-7c)

V bc2=" 2bc2.' PVc 2b (1-7d)

The above example was carried out for the case when a single photon participates in
the upconversion process. To generalize to a multi-photon process, with m photons

participating, the appropriate intermediate and ground states are

I c> = Ic, n-m, 0> (1-8)

I b> = Ib, n-m, 1>

and the matrix element Vac2(m) which is given by:

V (m)= <aI V I 1><11V 12 > .... <m-1I V C> (1-9)
1,2,m-1 "h ((Oa - (01 + (0)'h (Coa +2co - to2)... 10)a + (m-1) (0 - om-l]

should replace Vac2 in equations. Similarly, Vc2a(m) should be substituted for Vc2a. States
Ii>, 12> through m-l> are the intermediate levels obtained from excitations of real states

off resonance as shown in Fig. 1-2. In our case, in the three-level system they would
involve Ia> or 6b> only.

The level energies for m photon processes, corresponding to equations (I-1) for

single photon processes are:

(Oa = tO + nto ,(I-l10a)

tb = (Ob' + (n - m) o + o' , (I-lOb)

Cocl= oc'+ no + (o' , (I-lOc)

tc2 = t c ' + (n - m) co (I-lOd)
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Ic>
----- --. -. --- --- --- 1 3 >

"M (0
............... 1 2>

ja> 4Y -

09 0

Figure 1-2. Nuclear decay scheme for the two-level system showing a single
photon with energy h(o absorbed from the beam and a higher energy photon

with ho' = ho + ES - Eb emitted by the system as process 1. The
spontaneous decay rates from Ia>. and Ic:. are ya and Tc, respectively,
with ya << ye. A multiphoton process with three photons of energy he)
absorbed by the system and a photon of energy 11w = 3 ho' + Ea - Eb

released by the system Is shown as process 2.
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GAMUAP MULTIPHOTON UPCONVERSION CODE

c DYNAM4ICS OF T6E FOUR LEVEL SYSTEM
C S. N. DIXIT 5/6/86 (original version)

SC 8.BALKO :3/11/86 (MODIFIED)
IMPLICIT REtL *8(A-H,O-Z)
DIMENSION X:(100),RHOA(100),RHOC1(100),RHoc2(100),RHOB(100)
DIMENSION #2m-(16,16),XO(16),X(16,10),VXC2(20),VXC2T(20),WTERM(20)

CKG Input answe- variable.
* CHARACTER*1 -;N8

NEQI16
NPTS-10

C
C INPUT PARAMETERS
C GAMMtA, CAMAC,kYAC1,VAC2,VBC1,VGC2

*C WB,WAC1,WAC2,W8C1,WBC2,WClC2
C
C

IFLG = 0
DO WHILE(IFLG.EQ.0)
GAMAA-4.6D-7
GAMAC-4.3011
T --- 5.D-9
VAC1=0 .0
VAC2O=2 .085015
VBC1l0.O0
VBC2-DSQRT( 2AMAC)
WA8-O.D0

* AC1--2.42167018
WAC2--1 .20902015
WBC1 UWAC1
W BC 2-WA C2
WC1 C2=WBC2-WSC1

XW = 10.0
*XINT - 1.D10

XWCA - 100.
)G.AB 1.D6
XWAC = - XWCA
XWBC = XWAC - XWAB
XGR a 0.0

C INPUT CONSTANTS
XPI = 3.1428
XPLAK a 1 .0545887D-34
PLAN~K a DSQRT(1./XPLAK)
XALPA a 1.0/137.03604
YALPA = XALPA/XPLAK
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C :Ot'k)ERS,':N FROM EV To HZ
EV a2.-':304014

C ATOM IC PR-**IUS IN CM
C XRAC = 1.0D-8
C
C NUCL.EAR --ADIUS IN CMI

KRC-1.0-13
XRAC - xAC*5.070-1

C
C NEW INPU-

MNFOT = a
W = XW*E.;
.4.P - XW + ',WAB
WP a XWP-wEV

CKG Save the values.
SGP01AA GOMA

SGMC = SAMAC
SVAC20 V AC20
SW~c ACI.~C
SWAC2 - 4C2

10 FORM'AT(Al)
WRITE(6,m) 'Input XW value? <RETURN>--NO, Y-YES'
READ( 5,10 )ANS
IFC (ANS.EQ. 'Y') .OR. (ANS.EQ. 'y' ))THEN

READ( 5,*)XW
-END I F

WRITE(6,*) 'Input XINT value? (RETURN>-NO, Y=YES'
READ(5,10)ANS
IF((ANS.E-Q'Y').OR.(ANS.EQ.'y'))THEN

REAO(5,*)XINT
END IF

WRlTE(6,*) 'Input XW.CA value? <RETURN>=NO, Y=YES'
REAO( 5,10)ANS
IF( CANS .EQ. 'Y) .OR . ANS .EQ. 'y') )THEN
READ( 5,*)XWCA
END IF

WRITEC6,*) 'Input XGR value? <RETURN>=N0, Y-YES'
REAO(5,1O)ANS
IF((ANS.EQ.'Y').OR.(ANS.EQ.'y'))THEN
READ( 5,*)XGR

END IF

WRITE(.6,*) 'Input T value? <RETURN>-NO, Y=YES'
REAO( 5,10 )ANS
IF( (ANS.EQ. 'Y') .OR.(ANS.EQ. 'y ) )THEN
READ( 5,*)T
END IF
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... JAC

WRITE '5,30 :tw,XINT,XWAC,XWA8,MNFOT
30 rORMAT( -::NPUT PARAMETERS:XW,XINT,XWAC,XWAB,MNFOT'/

N - IMNFOT
M - N/2 +
W - XN*EV- (RNOTGAA
XW - W/ EV.
WAC = WCV

0 'JAC20 = *P.C*DQRT(2. 0*XP I*XALPAkX INT) *PLANK
WCi C2 =WBC 2-JB C1

C CALCULATICN OF VAC2
C

C
* WRITE(6,45+

45 FORMAT(lX, VAC20 CALCULATED AS A FUNCTION OF PHOTON NUMBER')
C

WTERM(l) -=.
C

DO 50 J=1,.M
WTERM(2*J) a(WAC + C2*J-1)*.) + (3AMAC

*50 WTERM(2*J+I) -(2.*J)*W
VXC2(l) t.AC20
VXC2T(l) = )XC2(l)
D0 650 1-2,N-1
VXC2( I) =VXCZC I-1)*kVAC20/WTERM( I)

60 VXC2T(t) - VXC2TCI-1) + VXC2(I)
* VXC2CN) - tVXC2(N-1)*VAC2O/(WTERM(N) + GAMAC)

VXC2T(N) - -XC2TCN-1) + VXC2CN)

DO '62 1-1,N
652 WRITE(6,65) I,WTERM(I),VXC2(I),VXC2T(1)
65 FORMAT(lX,l5,1P3Dl5.6)

WRITE(6,*) "ENTER 1 FOR VAC2, 2 FOR VAC2T
REMD(S,*) ICHOICE
WRITE(6,*) ' WHICH ONE?
READ (5,*) IONE
IF (ICHOICE.EQ.1) THEN

* VAC20O VXC2(IONE)
ELSE
VAC20 a VXC2T(IONE)
END IF

20 FORHAT(/,As)
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MP = IlONE
XW4P - XWB MP*W/EV

WP -XWP*-v
WS- 0.0

XWACl - AA - XW.P
WAC1 - XWAbC1*Ek)
XWAC2 - xOAC + MP*XW
WAC2 = Xl..4C2*EV
XWBC1 = )C49C - MP*XW
WBCl - XWBC1*EV
XWBC2 - Xi..8C + XWP
w8C2 - X&'*C2*EV
WC1C2 - I.BC2 - WBC1

CKG
C

TINCA=0 .D3

C-2 .99792!Dl0
HBAR=1 . 545919D-27
Hin6. 62619i3D-27
TOPIC-2.DO*PI*C

C
TA=T*TOPI C

C TINCA-TINC*TOPIC
C
C WRITE(6,I)
C 1 FORMAT("')

WRITE(6 ,105)
105 FORMAT(1X.'DYNAMICS OF THE FOUR LF'EL SYSTEM',

1 /' INTENSITY VARIATIONW/)
WRITE(6,107) GAMAA,GAMAC,VAC1,VAC2O,VBCI,VBC2

107 FORMAT(' INPUT PARAMETERS: GAMAA,GAMAC,VAC1,VAC2,VBC1,VBC2'/'
1 IP6012.4)
WRITE(6,111) )WAB,XAC,XWBC,XGR,XWP,IONE

Ill FORHAT(' INPUT PARAMETERS: XWAB,XWAC,XWBC,XGR,XWP,INE'/
1 lP5Dl2.4,I4)
WRITECG,108) WAB,WACI,WAC2,WBC1,WBC2,WClC2

108 FORtIAT(' INPUT PARAMETERS: WAB,WACI,WAC2,WBC1,WBC2,WClC2'/
1 lP6Dl2.4)
WRITE(6,109)T,TINCA

109 FORi'AT(1X,"T,TINCA', lP2Dl6.4)
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VAC2O =Vr-:C20/TOP IC
VBCI. =v9CtiTOP I C
VBC2=VBC2/TOP IC
WAB=-WA8,iTOP I C
WACJ.=WAC./TOP IC

* WAC2I..ACZ/TOPIC
W.BC=WBC/TOPI C
WBC2=WBC2/TOPI C
b.CC2=WCICZ/TOPI C

C
C INCREMENT VAC2
C

E0=0.1
AINT-0.1
DO 5000 :DELU1,NPTS
E2zEO+( IDEL-1)*AINT

* VAC2-VAC20*E2
C IFCE2.GE.0.0100) AINT=O.OXDO
C
C DEFINE THE INTENSITY DEPENDENT QUANTITIES (VAC2,VBC1)
C
C SET UP t* AND XO

DO 303 IL-1,NEQ'

DO 303 IM*2.,NEQ
AA( IL, IM)in0.DO

303 CONTINUE
C

* C NON-ZERO MA~TRIX ELEMENTS
C

XO(1)=I .00

AA(1 ,6)=2.DO*k'AC1
AA(1.,8)=2.DO*VAC2

AA(2, 2) a-GAMAC
AA(2,9)=-2.DO*VAC1
A(2,14)-2.0*vBC1

AA( 3,2.)nuAMAA
*1 AA(3,2)uGAMAC

AA(3,4)-GAMAC
AA( 3, 14) .D0*VBC1
AA(3,16)2.DO*,.BC2
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AA( 4, 8) =-2.- DO~VAC2

AA( 5, 5) z-( Gw.* .A+GAMAC)/2 - DO

AA(5,1)3-4)C2*

~A6,2)VAC1
AA(6,1)U-VAC1
AA(6,11)-VAC2
AA( 6,9) =-V6C.

AA(7, 7)=AA(3,!)
A( 7,8) z-WAC2
AA(7,12)VAC

AA( 7,1O)u--BC2

AA (8,8) -A(7, -)
AA(8, 7) =-AA7. 8)
AA(8,4)VkAC2
AA(8,1)=-VAC2
AA(S 8,21.) =V)ACI
AAC 8,9) =-V8C2

AA(, 99) u-wampw/2 .DO
AA(9,1O)*JAB
AA(9 ,14) =VAC1

AA916) =VAC2
AA(9,6)ZVBC1
AA(9,8)-V8C 2

AA(10 ,lO)=-Gp~A/2.DO
AA(10 ,9) O-AA(9,10)
AA(1O,13)=SVAC1
AA(10 ,15)=-VAC2

AA(10,7)UVBC2

AA(11 ,8)u-VAC1
AA(12 ,16)--V9C.
AA(11,6)--VAC2
AA(11 ,14)s-VBC2
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AA( 12. 12) GAC
AA(12,11)=-rJClC2

A12. 5) -Vr-:2

AA(13.13)=-aAMAC/2.DO

~A 13. 10) =t-,C1

* AA(14.14) =--3AAC/2. DO

4A 14.29) = -k5-41

'kA(15,1)=- 8-C1

4A16. 16) =-3AMAC/2. DO
* ~Ao(16,15)=-4BC2

AA(1. 10 ) =k-)C2

AA(16.3)--k'SC2
AA(16,4)ukJeC2

C
print *,'idellidel

CALL SOLVE(NEQ,1,AA,X0,ZR,ZRO,ZRINV,ZW,TA,TINCA,X,1,2,3,4)
C
C STORE THE SOLUTION

XI( IDEL)-E2
RHOA( IDEL)-XC1,1)

* RHOCiC IDEL)-X((2,I)
RHOC2(IDEL)=X(4,I)
RHOB( IDEL)-X( 3,1)

C
5000 CONTINUE

C
C OU'TPUT
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cS

WRITE(6,54)kXI CIDEL) ,RHOA( IDEL) ,RHOB( IDEL) ,RHOCl( IDEL)
1RHOC2( IDE-) , IDEL=I ,NPTS)

54 FORMAT(1XIP5015.6)
55 FORMAT(lX,!?2D15.6)

WRITE(1,55)(XI(IDEL),RHOA(IDEL),
IIDEL=t,NP7S)
W4RITE(2,55) (XI(CIDEL) ,RHOB( IDEL),
IIDEL=I,NP7S)
WRITEC6.*)'ANOTHER RUN? Y = YES, N = NO'
READ(5,1O)ANS
IF((ANS.EQ.'N').OR.(ANS.EQ.'n'))IFLG-1S

END DO
STOP
END
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APPENDIX K

0 PROGRAM PNP

NAME LIST

A - Parameter in determining well depth Yukawa Potential

B - Parameter in Yukawa Potential for radial scaling

BC - Parameter in Yukawa Potential for

Y(12) Array for phase space position of the three-particle system

DERY(12) Array for time derivatives of Y(12)

WORK(352) Real *8 Work Array for ODE

IWORK(5) Integer Work Array for ODE

Xl, Y1, PX 1, PY Positions and Momenta for Neutron in Cartesian Coordinates

X2, Y2, PX2, PY2 Positions and Momenta for 1 Proton in Cartesian Coordinates

X3, Y3, PX3, PY3 Positions and Momenta for 2nd Proton in Cartesian
0 Coordinates

Assignment of positions and momentum are as follows:

Y(1) X1 Neutron

0 Y(2) Y1

Y(3) X2 Proton 1 Cartesian Coordinates

Y(4) Y2

Y(5) X3 Proton 2

Y(6) Y3
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Y(7) PXI Neutron

Y(8) PY1

Y(9) PX2 Proton 1 Cartesian Momenta

Y(10) PY2

Y(11) PX3 Proton 2

Y(12) PY3

URAND(IY) Random number generator with seed IY in range [0,1]

DX - Range of X,Y Box for initial coordinates

DP - Range of Px, Py Box for initial momenta

PX - Total X momentum

PY - Total Y momentum

ETOT - Subroutine to Compute

Kinetic energy - EK

Potential energy - EPOT

Total energy - ET

Angular Momentum - XL

from phase space configuration Y(12)

ODE - Name for differential equation solver

FCT - external function containing set of equations

T - time variable (current)

TOUT - target time for ODE

Relerr - Relative Error

Abserr - Absolute Error

IFLAG - Communication Variable

IFLAG = I on lstStep
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IFLAG = 2 on normal return

R1 - Distance of Neutron to Proton 1

R2 - Distance of Neutron to Proton 2

R3 - Distance of Proton 1 to Proton 2

FCT Subroutine for set of Hamilton's equations to be solved. The 1st set of 6
equations are for the calculation of particle momenta.

DERY (1) DY (1) - aH - H PX1
DT - Y (1) - X 1

DERY (2) = DY(2) o = PX2DT - aY(2) - aY1 -

DERY (3) DY(3) =-- D = PX2
DT Ty (T jX2 -P2

DERY(4) DY(4) = H oHDE0' 4 DT T= (r = - P2'

DERY(5) - DY(5) = H aH X3
DT Y(5) = TY3 = P

DERY(6)= DY = a )  DHurR- (=3 - PY3

The second set of six equations are for the calculation of particle coordinates.

K-5



DERY (7) D ()j -aV'~DT -) 1 a~l ax 1  TR2  DX1

DERY8 = DY(8)= ~ ~ 1 -ax'v

DERY (9)- DY(9) H V ax. D V
DT dX 2  a~1  ax2  R

Dy 1)= DY(10) -a H -aV aRl aV aR3

DERY1 (10au aR 1 a;j -

DERY (11) = RXU_-a ax a' a 3DTur- aR2  ax 3  FR3  ax 3

DERY(12) = DY(12) H x ay R V 211
DT iR2 )R3 a Y3

For this set of equations the folowing code names are used in the computer

program.

DVR1 av/aR1

DVR2 a aa

DVR3 a MvaR3

DRiXl aRi/aXi
DR1Y1 a iRl/aYl

DRIX2 aaRliaX2

DR1Y2 -= aRliaY2

DR2X1 a aR2/Z)XI

DR2Y1 a aR2/Yi
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DR2X3 a aR2/aX3

0 DR2Y3 = aR2/DY3

DR3X2 a aR3/DX2

DR3Y2 a DR3/aY2

* DR3X3 aR3/aMX3

DR3Y3 a aR3/aY3

List of parameters used in ETOT, subroutine used to compute energy and angular

* momenta.

EKN - Kinetic energy of neutron

EKP1 - Kinetic energy of proton 1

* EKP2 - Kinetic energy of proton 2

VR1 - Potential energy of neutron - proton 1

VR2 - Potential energy of neutron - proton 2

* VR3 - Potential energy of proton 1 - proton 2

EK - Total kinetic energy

EPOT - Total potential energy

El" - Sum of total kinetic and potential energy

XC - X Cartesian position of center of mass

* YC - Y Cartesian position of center of mass

XL 1 - Angular momentum of neutroi about (Xc, Yc)

XL2 - Angular momentum of proton 1 about (Xc, Yc)

XL3 - Angular momentum of proton 2 about (Xc, Yc)

XL - Total angular momentum

K
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PNP ELECTRON NUCLEAR COUPLING CODES

IMPLICIT RE4L*8(A-HvO-z)
COMMON /AAA/ Ar0,8v~aXMN

DIMENSION WORK(352)PIWORK(5)
EXTERNAL FCT

C0
C +
C PROGRAM FOR- 0 ,NvP CHE .3) V2
C BY D W NOF'
C SEPT 19?5
C
C N
C

C
C+

C
C MOTIUN rCJNFINiEO TO 9--Y SPACE
C N XlIY1-,PX1.PY1 QCI.2),P(7v8)
C P1 X2oY",PX2,PY2 QC3,4)*P(9*1O)
C P2 X3,Y7.PX3,PY3 Q(5*6),P(Ilot2)
C
C UNITS
C 1 T I E W41IT ?
C 1 ENERGY *'N[T = I MEV
C 1 DISTANCE UNIT = 1 FM (10**-13CM)
C
C INPUT OFF PARAMETERS

A x 22.700
B z 0.85800
BC s2.47D0

XMN =1000.100
C
C INPUT INITIAL CONDITIONS
C ********************
C
C CODE RUNS 100 TRAJECTORIES0
C FOR -30 (E ( -10 MEY
C AND 4. L ( 10

00 1001 11=1,100
IY = 7
DX = 8.000
OP m 100.000

X1 = 0.ODO

C
DO 1 J=1.10c0
X2 = DX*(URAND(IY)-0.500)
Y= OX*(URAND(IY)-0.500)

X3 a DX*(URAMDOUY)-0.5DO)
Y3 - DX*(URAND(IY)-0.500)

PX1 a DP*(URAND(IY) -0.5D0)
PYI w OP*(UQAND(IYI -0.500)
PXZ a DP*(URAND(IY) -0.500)
PY2 w DP*(URANDCIY) -0.500)
PX3 = -(PEI + PX2)

aY -(PYI + PY2)
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0C

C MOMENTUM4 CHIECK
PX = PX1 *PXZ + PX3
PY = PY1 + PY2 + PY3

Y(j) = X1
Y(2) 2 Yl
Y(3a) X
Y(4) =Y2
Y(5) = )
Y(6) = Y3
YC7 = Pxl
Y(8) = PYl
Y(9) = rX2
Y(10) xPY2

*Y(11)= X
Y(12) =PY3

C
CALL ET0T(Y, i:rEPCTETPXL)
IF (ET.GT.-30.000.ANO.ET .LT.-10.OO0O.ANO.

s 0ABS(XL).GT.4.OCO.ANC.DAI8(XL).LT.10.ODO) GO TO 2
1 CONrINUE
2 C2ONTIN~UE

106 FOI*IAT(' *.'0XT.PYT*,2OZ0.10)

WRITE (6.lO3) A3,Y3,PX3,PY3
101 FORMAT(o **UII%4020.10)
102 FORMAT0 ',*Z22*r4D20.IO)

*103 FORMATC P33o42.q
WRITE(6vl04) ETDEKEPOTPXL

104 FORMAT0 9,fETEKEPOr.LT' ,4D20.10)

NPTS a8000
T a 0.000
ABSERR = 1.00-1?

* RELERR = 0.000
IFLAG a
NOIM = 12
TSTEP = 1.0n000

C
Rl = (Y(l)-Y(3))**2 * (Y(2)-Y(4))**2
R2 = (YC)-Y(S))**2 + (Y(2)-V(6))**2

k3=(Y(31-Y(5))**2 * (Y(4)-YC6))**2
*RI = DQT(I

H2 DSWHT(R2)
F93 z DSG~T(143)

C
DO 7 Il.,NPTS
TOUT -TSTEP*DFLOAT(T)

* CALL ODE(FCTNDIM.Y.T,TOUTELERRABSERR*.IFLAG.WORK,IWOIK)
CALL ETCT(Y*EKPEP0ToET.,XL)

C
Rl w CY(l)-Y(3))**2 * YC)-Y(4))**2
R2 z (Y(1)-Y(5))**2 (Y(2)-Y(6))**2
R3 a CY(3)-Y(51)**2 (Y(4)-Y(6))**2
Pl a DSQRTORl)

P3 a 0SIRTCR.?)
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C OUTPUT TO PLOTTER Y(1-6,)

105 FORMAT(* @,#Y62.1)
7 cONTIkUE

C WRITE(6l'5) P1.N2,R3,'ETT

STOP
ENO

C

SU8FUUTINE FCTC~X.Y,OEPY)
IMPLICIT ZZAL*.3(A-H.O-Z)
COM'MUN 1AAA/ A.'4CB,XMN
REAL*3 Yc'-,),DE-:Y(12)

C
R,= (Y(l)-Y(3))**2 + (Y(2)-Y(4))**2

H2 = (Y(1,-Y(5))**2 + (Y(2)-Y(6))**2
P~3 = (Y(3)-Y(5))**2 + * 4-Yd)*
Fl =I)SWRJT(RI)

h2 DSWH~TUq2)
h~3 =DSW'(43)

C
C DV/PI

LVR2= A*4C*(i.0CO+8*82)*CEAP(-FP*P2)/P2**2
LVq-= A*-3C*(I.0OOO+H*r3)*U~xP(-fP*P3)/P3**? -1.44Uf/4**2

C
C
C DR1/i)9

DRlXl = CfCJJ-Y(3))/Rl
DRlX2 = tY(3)-Y(I))1Rl
DRlYl (Y(2)-Y(4))/Rl
DRlY2 = (Y(4)-Y(2))/Rl

C
C DR2DQ

DR2XI. * (Y(l)-Y(5))/FR2
0R2X3 = CY(5)-Y(l))/R2
DR2Y1 = (Y(2)-Y(6))/F2
DR2Y3 = (Y(6)-Y(2))/N2S

C
C DR3D'Q

DK3X2 =(Y(3)-Y(S)1/R3
085X3 = (Y(5)-Y(3))/P3
DR3Y2 = (Y(4)-Y(6))/P3
Dki3Y3 = (Y(6)-Y(4))/R3

CS
C P EQUATIONS

DERY~l) = Y(7)/XMN
UERY(2) =Y(8)I'XMN
DERY(3) = Y('flfXMN
UERY(4) = Y(1O)/XMN
DERY(5) = Y(11)/XM4
DERY(6) =Y(L.2)/XMN

C 9 EQaUATION4S
DERYC?) = -OVRJ*uRlXl - DVR2*OR2X1
OERY(8) = -f0Vl4*i)RlY1 - DVRZ*DR2Yl
DERY(9) x -0V191*081X2 - OvR3IDIR3x2
lERY~lo) a-O)VR1*nR1Y2 DVIK3*0I3Y2

DERY11) -1VH2*0R2X3. - DVRI3*CR3X3
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UERY12) -- )R2*D2Y3- DVfi3*01?3Y3
WETIUR N
I ND

C

C SU13ROUTINF !zr,)TCY.EK,FPIIT,E T.XL)
IMPLICIT -:AL*,i(A-HO-Z)

*CO#MON /AAA/ ,4oL0M
kEAL*3 Y(:--)

C
C KINETIC F'4FRGY

EK.N =U.5t')i*(Y(7)**? + Y(S)**?)/XMN
tKP1= +..T(()* Y(10)**2)/XMN
LK.P2 +.)*''(1*~ Y(12)**2)/XMN

C. POrENTIAL t:E~~uY
HI = Y(I)-Y(3))**2 + * 2-Y4)

12 (Y(l)-V(5i)**2 +*YZ-Y6)*
1, (Y(3)-f(5))**2 +

k2 DSWFIT( )

*k3 DS(wflT(!?3)

VRI = -A*-3C*f~tXP(-EI*R1)/Rl
VS2 = -A*~IC*fEXP(-B*P2)/R2
VR3 = -A*iC*EXP(-3*k3)/!R3 *1.4400/R?3

C TOTAL ENtf jY
EK= EKN + EU'1. + EK'P2

* ~EPOT = Viii + Vt?? + VR.3

ET = EK + P

C ANGULAR M>Il~
XC, = Y(1) + Y(5) + Y(5)
YC = Y(2) + Y(4) + Y(6)

C LZ = X*PY - Y*PX
XLl = (Y(1l - xC)*Y(l) -(Y(2) - YC)*Y(7)

*XL2 (Y(!) - XC)*Y(IO) - Y(4) -C*Y9

AL3 =CY(S) - %C)*Y(12) -(Y(6)- YC)*V(Il)
XL = XL1 * XL0 + XL3
XL =XL/197.3')o

RETURN
E NU
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NP2 ELECTRON NUCLEAR COUPLING CODE

IMPLICIT RE4L*8(A-H,O-Z)
COMMON /AAA/ A*RCPB,XMN
REAL*8 Y(16).sDERY(16)
DIMENSION ui)RIC.436)IWORK(5)
EXTERNAL FCT

C

*C PROGRAM4 FOR P .'4.P PN (HE 4) V
C BY 0 W NOID
C OCTOBER 1935
C
C N
C
C

C
C
C
CN
C
C mortoN CONFINED TO X--Y SPACE

*C NJ XloY1.PXIPY1 OC1.2)oP(9*1O)
C PI. X2,YPPX2oPY2 (Q(304)#P(11012)
C P2 )13,Y3*PX3,PY3 Q(506),P(13,14)
C N? X4pY4vPX4oPY4 Q(7,8),P(15,16)
C
C RI. NI*P.
C R(2 N1*PZ
C R3 Pl*P2

*C R4 N1*N2
C R5 N2*Pj
C R6 2P
C UNITS
C 1 TIME UNIT ?

C I ENERGY UNIT 1 MEV
C 1 DISTANCE UNIT a 1 FM C10**-13CM)

* C
C INPUT OFF PARAMETERS
C

A a ZZ.7U0
B a 0.858DO
BC a 2.47n0
XMN z 1000.000

C
*C INPUT INITIAL CONDITIONS

DX w 8.000
OP - 18.000
X1 2 0.000

* C
C DO 1 J=l.l000

X2 a DX*(URAND(IY)-0.500)
Y2 u DX*(URAND(IY)-0.500)
X2 a 2.000
Y2 - 0.000
X3 a Dx.(URAND(IY)-0.500)
Y3 a DX*(URANDCIY)-O.500)
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X 0.000
Y 3 =-2.000
14 DX*CUHAND(IY)-0.5O0)

Y4 a D*(URAND(IY)-0.500)
X4 2.000

Y4 -- 2.000
C

PX1 =DP*(UPANO(Iy) -0.5D0)
PYJ DP*(URANU)(LY) -0.500)
Px1 0.000
PY1 -Z.000
PX2 2 P*(UPAND(IY) -0.5D0)
PYZ 2 P*(URANO(IYJ -0.500)
PX2 -2.000

PY 0.000
PX3 D P*(URAND([Y) -0.500)
PY3 2DP*(URANDCIY) -0.500)
PX3 32.000

PY3 0.000
PX4 -(PXI + PX2 + PX3)

PY -(PYl PYZ + PY3)

C
C MOMENTUM CHECK

PX a PXI + PX2 + PX3 + PX4
P= PYJ + PY2 + PY3 + FYI.

C
YC1) z X1
Y(2) = Yl
Y(3) x X
YW4 = Y2
Y(5) z X3
Y(6) uY3
Y(7) z X4
Y(8) a Y4.
Y(9) w PxI.
Y(10) = P11.
1(11 2 PX2
Y(12) 2 P12
Y(13) = PX3
Y(14) m PY3
Y(15) sPX4
Y(16) a PY4

C
CALL ETOT(YEK*EPOT*ETXL)

C IF (ET.GT..i0.000.ANO.ET.LT .-10.000.ANO.
C s DA&S(KL).GT.4.000.ANC.DAeS(XL).LT.10.OlO) GO TO 2

1 CONTINUE
2 CONTINUE

C
WRITE(6P106) PX*VY

106 FORMAT( %,PXT,PYT.?020.10)
WRITE(6,l01) X1,yl.PX1,PY1
WRITE(6#102) X2*YZPZ.PY2
WRITE(6ol03) X3.Y3,PX3,PY3
WRITE(6P104) X~oY4.PX4,PY4

101 FORMAT(o *.'11%4nZ0.10)
102 FORMATV *,1Z22*,4DZ0.10)
103 FORMAT( *,0333*P4020.10)
104 FORMAT( ',144E.%4020.10)

URITEC6*105) ET,EKEPOTPXL
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105 FORMATV , ,ET,EK,EPOT#LT',4D20.10)
* C PTS a8000

T 20.0100
ABSERR a 1.00-12
RELERR =0.000
IFLAG = 1
NDIM a 16

* C TSTEP a 1.00000

Rl a (V(1)-Y(3))**2 + CYC?)-YC4))**2
R2 (Y(1)-YC5))**2 + CY(2)-Y(6))**2
k3 a (Y(3)-Y(5))**2 + * 4-Y6)
R4 a (Y(7)-Y(l))**2 + (Y(8)-Y(2))**2
R5 a Y(7)-Y(3))**2 + * 8-Y4)*
R6 = (Y(7)-Y(5))**2 + * 8-Y6)*

Ri a SQRT(RI)
R2 a DSQNT(R2)
R3 OSORT(RS)

it4 u DSQHT 04)
R5 = OSORTUR5)
R6 a DSQRTCH6)

00 7 11NPTS
TOUT a TSTEP*DFLOAT(!)

C
CALL OOE(FCT,NDIMY.T.TOUTPELERRA8SERP,IFLAG*ldORKD [WORK)

CALL ETOT(Y,EKoEPOToET.AL)
C

RI. a (Y(l)-YC3))**2 *(Y(2)-Y(4))**2
R2 a (Y(l)-Y(5))**Z *Y2-(6)*
R3 a (Y(3)-Y(5))**2 *CYC4)-Y(6))**2
R4 a (Y(7)-Ytl))**2 (YC8)-Y(2))**2
R5 a (Y(7)-YC3))**2 (Y* -(4)*

R6 a (VC7)-Y(5))**2 + CY(8)-Y(d))**2
C

RI m SQRTCRI)
R2 = DSQRTcHZ)
R3 a DSoRr(HS)
R4 z DSQRTCR4)
P5 a DSfJRT(R5)
R6 = OSQRTCR6)

C
URITE(6.1

0 7) RI..RZ.R3,R4.ET,XL,T
107 FORMAT0 ',lXY',4O14.5,2O20 .I0.012.4)

7 CONTINUE
C

STOP
ENO

C
C

SUBROUTINE FCTCX,Y&OERY)

* IMPLICIT REAL*S(AH*0Z)
COMMON /AAA/ A*BCB,XMN
REAL*$ Y(16),DERY(16)

C
Rl a (Y(1)-Y(3))**2 * (()Y4)*

H2 = (Y(l)-Y(5))*s2 * (Y(2)-YCE))**2
R3 a (Y(3)-Y(5))**2 + (Y(4)-YC6))**Z
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94 ( Y(7)-Y(l))**2 + * S-Y2)*

k'5 ( Y(7)-Y(3))**2 + * S-Y4)*

c F 6 =(Y(7)-Y(5))**2 + * 
M-Y6)*

R4 I DSWFl T(W 1)

R3 sDS&J1RTO(3)

F; DSWdRT(R4)
R~5 0 SQRTC'R5)
Po OSQRT(N6)

[DVRlz A*MC*(1.0OO,9*Rl)*OEXPC-B*Rl)/Rl**)
DVR2= A*~C(.D**2*EP-*2/2*
DVR3= A*IC*(.oO+f*3)*OEPURH*R3)/R3**2 -1.44001'R3**?

DVR4= A*RC*(1.0OO+B*R4)*OEXP(B*R4)/R4*'*2
t; VR52 A4*C*(1.OOO+*R5)*OEAP(*R5)/R5**2
VVR6= A.*C*(.ODOB*R6)*DEXP(-R*R6)/R6*t2

DRil' = CY(l)-Y(3))/Pl
DRlx2 = (Y(3)-Y(l))/Rl
OH1Yl = (Y(2)-Y(4))/Rl
1mlY2 = (Y(4)-Y(2))/Rl

DRZxl = CY()-Y(5))/k2
IDH2A3 = (()Y1)R
OR2Yl a (Y(2)-YC6))/R2
DR2Y3 z (YC61-Y(2))/R2

c0
C DR309

0R3X2 = (Y(3)-YC5))1R3
DR3X3 m (Y(5)-Y(3))/H3
0R3Y2 a (YC4)-Y(6))/H3
0R3Y3 a(Y(6)-Y(4))/R3

C
C DR4/Dfi

DR4AI (Y(I)-YC?))/R4
OR4A4 z CY(7)-Y(l))/R4
DR4Y1 a (Y(Z)-Y(8))/P.
DR4Y4 z (Y(d)-Y(2))/R4

C

C DR504
DR5A? CY(3)-YC7))/R5

DRSX4 m (YC7)-YC3))/PS
0W5Y2 = (Y(4)-Y(8)3/RS
DIR5Y' a (Y(S)-Y(4))/R5

C DR60Q
DR6A3 =(Y(5)-Y(7))/R6
DH6A4 a (Y(7)-YC5)R6
0R6Y3 = (()Yg)P
DR6Y4 a(~)Y6)R

c P EQUATIONS
UERY~l) z Y(9)/XMN
DERY(2) aYCIO)/XMN
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UERY(3) aY(11)/XMN
LIERY(4) a Y(12)/XMN
UERY(5) s Y(13)/XMN
UiEHY(6) aY(14)/XMN
LEHY(7) = YU15)/XMN
UERY(S) = Y(16)/XMN

W EQUATIONS
DERY(') =-DVRJ*URl~l - OVR2*DR2Xl - f)YR4*DR4Xl
UERY(10) -LDVlI*OR1Y1 - OVI9?*DR2Yl - DVH4*nflRi.
tERY(!I) -g)v~l1.ORIA7 - DV'i3*DfR3X2 - DVR5*OR5X7
DERY(12) =-t)VR1*DR1Y2' - UVH3*O)R3Y2 - OVRS*OR5Y2
UERY(13) -UVNe2*DR2X3 - OVIS3*CR3X3 - DVR6*flR6X3
CJERY('.4) -uV142*DR2Y3 - DVR3*0R3Y3 - DVf?6*DR6Y3
DERYU15) =- DVIN4*OR4x4 - VR5*VFSX4 - DVR6*DR6X4
UERYU16) =- DVK~4*UR4Y4 - O'R5*0R5Y4 - fVR6*0R6Y4

FETUH4
END

C
C

SUOROUTINF FTOT(YpE~vEPOT#ETvX.)
IMPLICIT PEAL*I(A-Ha-1)
C-CMPMUF /AAA/ AoIIC.B#XMN~
kEAL*8 Y(16)

C
C KINLTIC FE4FRGY

OX1 .50fl*(YC9)**2 + Y(IC)**?)/XMN
EKPlz 0.5D0*(YCII.)**2 + Y(12)*)/XMN
EKP? = 0.SiO*s(YC13)**2 + Y(14)**?)/X,14N
EKN2 a O.500*(Y(15)**2 + Y(16)**2)/XMN

C P07ENTIAL ENERGY
RI a (Y(I)-Y(3))**2 +*Y2-Y4)*
R2 a (Y(l)-YC5))**2 + (Y(2)-Y(6))**2
R3 a (YCS)-YCS))**2 + (YC4)-Y(6))**2
R4 a (Y(7)-Y(l))**2 + (YC.3)-Y(2))**2
R5 (Y(7)-Y(3))**2 + (Y(8)-Y(4))**2
k6 a4 (Y(7)-Y(53)**2 + (Y(8)-Y(6))**2

Pl DSG14T(Rl)
142 a DON141C0,2)
W43 = DSORT(1?3)
R4, a DScRHT(R4)
R5 a DSQFRT(H5)

*H6 aDSQHTCP6)

VRI. -A*'5C.OEXP(-9*Rl)/Rl
VR2 -A*dC*I)EXP(-E3*H?)/R2
VR3 = -A*dC*OEXP(-B*R3)/H3 +1.44DO/R3
VR4 =-A*,4C.OEXP(-R*R4)/R.
VR5 -A*diC*UEXP(-13*R5)/RS
VR6 z -A*tdC*OEXP(-ti*P6)/R6

C TOTAL ENEPjY
EU EKN1 + EKPI. FKP2 + FKN2
t UT VRJ + VR2 + VR3 + V.R4 + VF5 + VRA

ET zEK * EPOT

C ANGULAP MOMENTUM
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AC = Y(l) * Yv(3) * Y(5) + '1(7

YC = Y1(2) *Y(41 + Y(6) + '(R)

C LZ = X*Y- Y
XLI = (Y(!) - XC)*Y(IO) - (Y(2) - YC)*Y(9)
XL2 = (Y1(3) - XC)*Y(12) - (Y1(4) - YC)*Y(11)
AL3 = (Y(5) - XC)*Y(14) - (Y1(6)- YC)*Y(13)

X4= (Y1(7) - XC)*Y(16) - (Y1(8)- YC)*Y(15)
XL = XLl + XL2 + XL3 *XL4
AL = L/10 7.31LJ0

RETURN
E NO
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APPENDIX M

PROGRAM NEC

(NAME LIST AND CODE LISTING)
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APPENDIX M

PROGRAM NEC

(NAME LIST AND CODE LISTING)

XNTO - R Value of Turning Point for Proton

XLN - Proton Angular Momentum

XETO - r Value of Outer Turning Point for Electron

XLE - Electron Angular Momentum

XMN - Mass of Proton in MEV

VO - Well Depth Wood-Saxons Potential

RN Radial Scale Parameter

AN For Wood-Saxons Potential

Z - Nuclear Charge

XME - Mass of Electron in MEV

S - Coupling Parameter

S = 0 No Coupling

S = 1 Coupled System

Y(1) - X Cartesian Coordinate of P+

0 Y(2) - Y Cartesian Coordinate of P+

Y(3) - X Momenta of P+ PXN

Y(4) - Y Momenta of P+ PYN

0 Y(5) - X Cartesian Coordinate of e"

Y(6) - Y Cartesian Coordinate of e"

Y(7) - X Momenta of e- PXe

Y(8) Y Momenta of e" PYe
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XK - Nuclear Charge in MEV FM Units

DPX - e- - P+ X Dipole Cartesian Component

DPY e- - P+ Y Dipole Cartesian Component

DPNX - P+ - X Cartesian Coordinate

DPEX - e- - X Cartesian Coordinate

DPT - e- - Proton - Coupling Term

1.44 1.44

(Y(1) - Y(5)) 2 + (Y(2) - Y(6) )2 'e- P+

ABSERR Error Parameters for ODE

RELERR Relative Error

IFLAG Control Parameter for ODE

NDIM - Number of Equations

NPTS - Number of Time Steps to be Propagated

T - Time Variable

TSTRP - Integration Time Step Output in Increments of TSTEP

TOUT - Output Time

EPOT - Total Potential Energy

EKG - Total Kinetic Energy

KET - Total Energy H

CVEP - Current Value of DPT

AVEP - Largest Value of DPT

CORR4 - Subroutine to Fourier Analyze Correlation Functions

TSP - Subroutine to Subtract Spectra

POT - Function Subroutine to Compute Potential Energy

RP - Radius of P+ from Origin

RE - Radius of e- from Origin
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REP - P+ - e- Distance

VE - Coulomb Potential for E"

VN - Nuclear Potential Energy

VEP - Nucleon - Electron - Potential Energy

0 FCT - Subroutine Containing Differential Equations to be Solved (Hamilton's

equations)

DERY(l) = DY() H NDT r = XN Nucleon equation

DT - "bTy- = k N uceneuto

DY(2) -HDERY(2) = DTa = PN Nucleon equation

DERY(3) DY(3) -H - Nucleon equation

DT - = YN X

DERY(6) -- = Hy = Pic

D 4 = " - P E N ucleon equation

DERY(7) = = -X - Pxe Nleon equationDERY(5) DY(5) = k Electron equation

DERY(6) - DT) == py Electron equation

DER(7 -DY(7) = nur=P Electron equation

DERY(8) onY()= 1 = Pye Electron equation

CORR4 - Subroutine to Fourier Transform Various Dipole Operators

0 DP - Array of Dipole Operators

FFTSC - Sin/Cos Transform Subroutine in [MSL

WA - Amplitude Function of Sin Transform

0 WB - Amplitude Function of Cos Transform
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TP - Signal Observation Tim

FREQ -Frequency Increment in MEV

Subroutine TSP - Subtracts Various Spectral Components

0
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*NEC ELECTRON NUCLEAR COUPLING CODE

C *TYoE NEC
IMPLICIT REAL*8(A-Ha-1)
COMMON /AAA/XMN*VORNAN
COMMON /dbd/ XMEPXKPS

DIbENSION WORK(268)PiWORK(5)
EXTERNAL FCT
REALeR Y(8),OERY(8)

C
C P0GRAM FOR ELECTRON-PRCTCN COUPLIN i
C
C IN HEAVY NUCLEII
C
C wRITTEN 8Y 0. W. NC|D
C DECEM8FR 1985
C (JAN 6plQ86)
C
C
C 'INITS
C FNE (iY MEV
C TIME 1/3*10**-23
C DISTANCE FM 10**-13
C
C
C INPUT OF DATA
C Z = 83 XLE = 1/2 RG = 1188
C I = 51 XLE = 1/2 RG = 1936
C Z = 29 XLE = 1/2 RG = 3400

*C
XNTO z 0.41)0
XLN = 3.000
XETO = 118.0D0
XLE z 0.500

C

C INPUT OF PARAMETERS
0 XMN = 938.0D0

VO = -50.Ou0
RN = 7.40
AN = 0.6500

Z = 83.000
X14E = 0.51100

C
0

C OLTPUT OF RESULTS
C UN COUPLED CCUPLEC OPERATOR
C IN OUT IN OUT ( OP )/FT(OP)
C 10 11 15 16 XN - XE
C 20 21 25 26 YN - YE
C 30 31 35 36 XN
C 40 41 45 46 XE
C 50 51 55 56 1.44/REP
C 17 18 XY TRAJECTORY
C

C
C NUCLEON PART
C

*C Y() X
C Y(2) = y
C Y(3) a PX

M-7

0



C Y(4) = PY
C0

DC 1 IJKI.o2
C SET S TO 1 FOR E-P COUPLE

S a DFLOAT(IJK~ - 1)
C

Y(1) a XNTO
Y(2) = 0.000
YC3) =0.000
Y(4) a 197.3100*XLN/YC1)

C
C ELECTRON PART
C
C Y(5) = X

C Yr(6) = Y
C Y(?) = P
C Y(.3) = PY
C

C
XK Z*1.4400
Y(5) a X TO
Y(6) = 0.000
Y(7) z0.000
YC8) z 197.31D0*XLE/Y(5)

C
C
C FIRST POINT

C INPUT DIPOLE MOMENTS
C

OPX =Y(1) - Y(5)
11 =10 * 5SCIJK-1)
WRITECII) OPX

C
OPY Y(2) - Y(6)
12 u20 * 5s(IJK-1)
WRITE(I?) OPY

DPNX A Y(l)
13 a 30 + 5*CIJK-1)
WRITE(13) DPNX

C
DPEX xY(5)

14z40 + 5*(TJK-1)
WRITE(14) OPEX

DPT =1.4400/DSQRTCDPX**2 OPY**2)
15 =50 + 5*(IJK-1)
WRITE(15) OPT

C
C LOOP

C INPUT OF INT DATA
C

ABSERR a 1.00-12
RELERR a 0.000
IFLAG a

NPYS a8192
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TSTEP= 25.nW)
* AVEP = 0.000

IT z 16 + IJK
C

DO 7 I=iNPrS
TOUT z T + TSTEP

457 CONTINUE
C

C CALL OUE (FCT,NO [N.Y. rTourRFLERFR.APSERRP.FLAG.WORK. [WCRK)

IF (T.NE.TjIJr) GO TO 457
EPOT= POT(Y(1).Y(2),Y(5),Y(6))
EK = 0.SDO0*(Y(i3)**2 + Y(4)**?) /XMN

s G.L)O*(Y(?)**2 + Y(8)**2)/XME
Er = *K FPoT

* C

C INPUT DIPULE MOMENTS
C

UPX =Y(1) - Y(5)

C
0 PY =Y(2) - Y(6)
0 WRITE(12) UPY

C
OPNX = Y(1)
WRITE(13) UPNX

C
OPEX a Y(5)
WRITECI4) DPEX*C
OPT a1.4400/DSQRT(OPX**2 * PY**2)
WRITE(I5) OPT

C
CVEP z OPT
IF (CVEP.GT..AVFP) AVEP aCVEP

* IF (1O*CI/1O).NE.I) GO TO ?
C WRITE (6*498) Y(1),Y(2) .ETY(5),Y(6)vT

498 FORMAT($ *'A'P6020.1O)
7 CONTINUE

888 CONTINUE
999 CONTINUE

WRITE(6,598) AVEP
598 FORMAT(' ','MAX E-P COUPLING =4,020.10)

*1 CONTINUE
C

DO 4.6 JK=1,5
IN z 1O*JK
IOUT = IN + 1

C
CALL CORR4crSTEPPNPTSINIOUT)

IN a IN + 5
[OUT = [OUT + 5

C
CALL CORR4(TSTEP*NPTSIN,IOLT3

C
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46 CONTI%UE

STOP
LL spNps

C

C

FUNCTION POT(XN,YNPXE*YE)

C POTENTIAL FUNCTION FOR NUCLEON-ELECTRON MODEL

IMPLICIT FEAL*8(A-14.O-Z)
COMMON /AAA/XMN,VO,RN,AN
COMPON /BHB/ XME,XKS

C
RP = DSWRT(XNO.2 + YN**2)
i= CSQRT(XE**2 + YE**2)

PEP = SNRT((XN-XE)**2 + (YN-YE)**2)
VeE = -AK/P

* 'VN =VO/(1.00O + OEXP((RP-RN )/AN))
vEP =-1.6400/REP
P~OT =VN + VE + S*VEP

PE TURN
END

C
C

SUBROUTINE FCT(XY.DERY)

c HAMILTONIAN EQUATION'S FOR NUCLEON-ELECTRON MOn)EL

IMPLICIT REAL*8CA-H#O-1)
COMMON /AAA/XMNVO*RNAN
COMMON /BBt3/ AMEDXKS
REAL*8 Y(8).DERY($I)

C
RP = DSQRT(Y(1)**2 + Y(2)**2)
RE = SfQRT(Y(5)**2 + Y(6)**2)
PEP z OSVRT((Yd1)-Y(5))**2 + (?()-Y(6))**2.
FHP =UEXP((RP-RN)/AN)
OVRP = -(VQ/AN)*FRP/(1.OOFRP)**2

C
C NUCLEON EQUATIONS

DERY(l1 = Y(3)/XMN
UERYC?) =Y(4)/XMN
UERY(3) = -DVRPsY(1)/'P

s - S*1.44D0*(Y(l)-Y(5))/REP**3
OERY(4) = -OVRP*Y(2)/RP

s - SS1.44100*(Y(2)-Y(6))/REP**3
C
C ELECTRON EQUATIONS

DERY(5) = Y(?)/XMES
DERY(6) = Y4/M
DERY(?) = -XIK.Y(5)/RE**3

s - S*1.44flo*YC5)-Y(1))/REP4.3
DERY(8) a -XK*YC8)/RE**3

S - S*1.44DO*(Y(6)-Y(2))/REP**3
C
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-E. TURN.
E mu*C

C
5UdFUUtU1EF CJfP,?4(TSTEpNIN. OLT)

C !>PE
CTRA GENERATION FROM CORRFLATION FIINCTIONS

IMPLICIT REAL*.' (A-H,0-1)
* DIMENSION ):tQ(1l,44)

COMPLFA*16 CdK(9193)
DIMENSION I.(99)oWA(A193)I.R (F93)
UATA TsOI1/6.'zi3lR53O7l795WeOO/

C
u-EwINC IN

C
L 1. .1= ,
kEAV (IN) DOM(1

1 LCNINUP
C

88 FORMAT(* @,*FRE1JENCIES')
C

CALL FFT5C (iPNvWAW3, IWKpliKCK)

KN = P-/2 + I
C
C PLOT THE tRANFORM
C SET THE lEc() FRE(OUENCY TERM
C

WA(1) =O.OnlO

WBM a.u00
C
C CALCULATr FRF'qUENCY
C

TI' = DFLCATe4-1)*TSJEP
FREQ = 1.O09/TP

*FRE Q =FRFQ*197.31DO

UO 12 11.PNN
FAA* DFLOAT(I-1)*FREG

C PESCALF FOR POSITIVE WA
SWA = wA(I)
WAMl a DSjF9T(SWA**2 4 WP(I)**2)/OFLOAT(NN)
WRITE(IOUT) wAC I)pWR(I)pFAA

*12 CONTINUE
C

RE TUIN
END

C
C

SUBPOUTINF TSP(NPTS)

* C IMPLICIT FEAL*8(A-HpqO-Z)

C
14EWINO 16
FEWINO 26
NEWINO 36
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k ElmIN C 46
lm Ew PvC 56
FE%14C 11
i-Ew 1N 0 21
F- EW INC 31
QEwI%C 41
f-E~iI NC 51

C
NN= PTS/2

Lo 1

PEAC(.76) xA2.XLU2,W2
REA(NC30, X'A3,X113vW3
i.EA(4(6) 'A%4,X4.W4
HLA('( ) XA5,Xt35,W5
kEALH(U) YAJ,YtJIF1

F-EA)( 311 YA 3*Y83,F3
NEL( 41) YA4,Yi34,F4
1'EAD(53.) YA5vy4i5*F5

C
6AI YAl - XA1

0A2 = YA2 - XA2
t;A3 = YA3 - XA3
IGA4 = YA4 - XA4
LA5 = YA5 - AA5

C

100 FORMAN(' 1,6f20.10)
I CONTINUE

FiE7URN
END
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